TSX-Plus
Programmer’s Reference Manual |

ssh computer systems, inc.

Sixth Edition—First Printing—January 1988

Copyright © 1980, 1981, 1982, 1988, 1984, 1985, 1986, 1987, 1988.
S&H Computer Systems, Inc.

1027 Seventeenth Avenue South

Nashville, Tennessee $87212-2299 USA

(615) 327-3670

The information in this document is subject to change without notice and should n‘oé be construed as a
commitment by S&H Computer Systems, Inc. S&H assumes no responsibility for any errors that may
appear in this document.

NOTE: TSX, TSX-Plus, PRO/TSX-Plus, COBOL-Plus, PRO/COBOL-Plus, RTSORT,
PRO/RTSORT and CLASS are proprietary products owned and developed by S&H Computer Systems,
Inc., Nashville, Tennessee, USA. The use of these products is governed by a licensing agreement that pro-
hibits the licensing or distribution of these products except by authorised dealers. Unless otherwise noted
in the licensing agreement, each copy of these products may be used only with a single computer at a single
site. S&H will seek legal redress for any unauthorised use of these products.

A license for RT-11 is required to use this product. S&H assumes no responsibility for the use or reliability
of this product on equipment which is not fully compatible with that of Digital Equipment Corporation.

Use, duplication, or disclosure by the Government, is subject to restrictions as set forth in subdivision
(b)(8)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7018.

Questions regarding the licensing arrangements for these products should be addressed to S&H Computer
Systems, Inc., 1027 Seventeenth Avenue South, Nashville, Tennessee 37212, (615) $27-3670, Telex 786577 S
AND H UD.

TSX®, TSX-Plus®, PRO/TSX~Plus™, COBOL-Plus® PRO/COBOL-Plus™ RTSORT®,PRO/RTSORT ™™, CLASS,
Process Windowing™, and Adaptive Scheduling Algorithm® are trademarks of S&H Computer Systems, Inc.

CTS-300, DEC, DIBOL, F77, PDP-11, Professional 300 Series, Q-Bus, RT-11, UNIBUS, VAX, VMS, VT52 and VT100 are
trademarks of Digital Equipment Corporation.

DBL is a trademark of Digital Information Systems Corporation.

TSX-Plus
Programmer’s Reference Manual

Distributed and Supported by

2483 Old Middlefield Way

"
Omn ' Mountain View ¢ CA 94043
~ CORPORATION ———

* (415)966-8400

Contents

1 Introdnctit;nw 1
1.1 Management of System Resources 0. 2
1.1.1 Memory Managementc00uuu.o.. e e e e 2
1.1.2 Execution Scheduling 2
1.1.3 Subprocesses and Process Windowing0.... 2

1.1.4 Directory and DataCaching. 2

1.1.5 System AdministrativeControl 3

1.1.8 Time-sharinglinesand CL unitsot v v v unnnen.. . 3

1.2 Summary of Chapter Contents e ettt e e e e e e e e e 3
1.2.1 TSX-PlusJob Environment nuunnune... 3

1.2.2 Program Controlled Terminal Optionsu...... 3

123 TSX-PlusEMTs ittt it e e e e e e e e 3
1.2.4 Shared Files, Record Locking and Data Caching 3

1.2.5 Inter-program Message Communication 4

1.2.6 Programming for CL and Special Device Handlers e e e e e e e e e e e e 4

1.2.7 RealtimeSupportt 4
1.2.8 Shared Run-time System Support 4

1.2.9 Program Debugging Facility 4
1.2.10 Program Performance Monitor Facility. e e e e e e e e e e e e e 4
1.2.11 Differences from RT-11ttt 5
1.2.12 Appendices e e e e e e e e e e e e e e e e 5

2 TSX-Plus Job Environment 7
2.1 Simulated RMONttt 7
2.2 Virtual and physicalmemory 7
2.3 User virtual address mappingottt e e e 8
2.4 Normal programs and virtual programs 9
~2.5° Access to system I/O page. . . . e 9
2.6 Job priorities e 9
2.7 Extended memory (PLAS)regions00 10
2.8 Shared run-time systems e 12
29 VMpseudo-devicehandler 12
2.10 User command interface : i e 12

i : CONTENTS

38 Program Controlled Terminal Options 15
3.1 Terminalinput/output handling 15
8.i.1 Activationcharacters. i i i it e e e e e e 15
3.1.2 Single character activation. e e e e e e e e et e e 16
8.1.3 Non-blocking . TTINR ittt ittt ittt eaee e 16
3.1.4 Non-blocking . TTOUTR it it ittt it ettt ee e e 17
3.2 Program controlled terminal options e e et e et 17
3.2.1 “A” function—Set rubout filler character 19
3.2.2 “B” & “C” functions—Set VT52, VT100 and VT200 escape-letter activation. 20
3.2.3 “D” function—Define new activationcharacter 20
3.2.4 “E” and “F? functionsf—Control characterechoing 20
3.2.5 “H” function—Disable subprocessuse e e e e e e e e 20
3.2.86 “I” and “J” functions—Control lowercaseinput 20
3.2.7 “K” and “L” functions—Control cha.ra.cter.echoing e e e et e e e e e 20
3.2.8 “M” function—Set transparency modeofoutput 21
3.2.9 “N” and “O” Functions—Control command fileinput 21
8.2.10 “P” function—Reset activation character e e et e e e 21
3.2.11 “Q” function—Set activation on field width e e e e e e e e e .21
3.2.12 “R” function—Turn on high-efficiency terminalmode 21
3.2.13 “S” function—Turn on single-character activationmode 22
3.2.14 “T” function—Turn off single-character activationmode 22
3.2.15 “U” function—Enable non-wait TT I/O testing P i 22
3.2.16 “V” function—Set field widthlimit 22
3.2.17 “W” and “X” functions—Controltapemode 22
3.2.18 “Y” and “Z” functions—Control line-feed echo e e e e e e e e e e e 23
4 TSX-Plus EMTs 25
4.1 Obtaining TSX-Plus system values ((GVAL)o vve v v eennnnnennnn 25
4.2 Determining number of free blocksinspoolfile 26
4.3 Determining if a jobis running under TSX-Plus, 27
4.4 Determining the TSX-Pluslinenumber o1
4.5 Determining subprocess jobnumber i i i i e 28
4.6 Set/Reset ODT activationmodettt 29
4.7 Sending a block of characters to theterminal 30
4.8 Accepting a block of characters from the terminal 30
4.9 Checking for terminal input erTors i e e e e e 31
4.10 Determining inpuﬁ characters pendingforaline 32
4.11 Set terminal read time-out value e e e 32
4.12 Turning high-efficiency terminal modeon andoff e e e e e e e e e e 33
4.13 Checking for activation characters 34

4.14 Sending a message to anotherline e e e e e e 35

CONTENTS : il

4.15 Starting A Detached Job. S e e e e e e e e e e e e e e e e 36
4.16 Checking the statusof adetachedjob 37
417 Killingajob o i e e e e e e e e e e e e e 38
4.18 Establishing break sentinelcontrol 38
4.19 Mount a file structure I 40
4.20 Dismount afilestructuret et e . 41
4.21 Dismounting all file structures and logicaldisks S 42
4.22 DismountingLogical Disks i i e e e, 42
4.23 Determining Status of Logical Disks P 43
4.24 Dismounting alllogicaldisks 45
4.25 Determining the terminal type e e e e e e e e e e e e e 46
4.26 Controllingthesizeofajob e e 46
4.27 Determining job statusinformation 0 0.0, 47
4.28 Determining file directory information 50
4.29 Setfting filecreation time L e e e e e e e e . 51
4.30 Determining or changing theusermame00t uiueenennee.. 53
4.31 EMT to determine or change program name v v v v v v v v v v v vt v vt e e 54
4.32 Settingjobpriority L e 55
4.33 Determining or changing job privileges e e, 57
4.34 Specifing that a file be placed in HOLD or NOHOLD mode 58
4/.35 Program controlled terminaloptions, 60
4.36 Forcing [non|interactive job characteristics 60
4.37 Setting terminal baud rates L. L e e e 61
4.38 Raising and lowering the DTR signalonaline e e e e e e e e e e e e e e e 63
4.39 Assigning a CL unit to a time-sharingline 64
4.40 Allocating a device forexclusiveuse 66
4.41 Job monitoring e 67

4.41.1 Establishing a monitoring connection e 68

4.41.2 Cancel a monitoring connection L. L e e e e e 68

4.41.3 Broadcast status report to monitoring jobs 69
4.42 Acquiring another job’sfilecontext L L L. ... 70
4.43 Manipulating process windows L. e e .. 72

4.43.1 Creatinga window o o i it i e e e e e e e e e e 72

4.43.2 Selecting acurrent window e e ... 75

4.43.3 Deletingwindows L L o e e e e e e e e e 75

4.43.4 Suspending window processingt ... T8

4.43.5 Resuming window processing v it it ittt e e e e e e e 76

4.43.6 Printingawindowt e e e e e 76
4.44 Switching Between Subprocesses 76

445 Mounting Logical Disks e ... 78

iv CONTENTS

5 Shared File Record Locking 31

5.1 Openingasharedfile. 82
5.2 Saving the status of a shared filechannel oL 84
5.3 Waitingforalockedblock L e e e 86
54 Tryingtolockablockt 88
5.5 Unlockingaspecificblockottt e it e e 90
5.6 Unlocking all locked blocksinafile e e 90

- 5.7 Checking for writes toashared file 0. 91
5.8 Datacaching ittt ittt ittt i e e e e 91
6 Message Communications I"a’cilitiés 93
6.1 Messagechannels i i i e e et 93
6.2 Sendingamessage e e e e e e e e e e e e e e e e 93
6.3 Checking for pending messages P 1
6.4 Waitingforamessagettt ittt e e e e 96
6.5 Scheduling a message completionroutine. L 0 o oL, 97
7 Programming for CL and Special Device Handlers 101
7.1 Communicationlinehandler (CL) 101
7.1.1 VTCOM/TRANSF support and CL handler 102

7.1.2 Terminal/Communication line cross connection 103

7.1.3 Redirecting CL and time-sharinglines 103

7.1.4 CLI/Ooperations viiiiii i iiiieeeeennnn. 104

7.1.5 CL control character processing« v v v i ittt bt e e e 104

7.1.6 CL .SPFUN operations e e e e e e e e e e e e e e e e 105

7.2 RKO0B/RKO7 handler (DM) ettt 113
7.3 DU (TMSCP) handler e e e e e e e e 113
7.4 IEEE GPIB handler (IB) e et e e e e et e et e e e 113
7.5 Logical subest disk handler (LD)ttt 113
76 MU(TMSCP)handler e e e 116
7.7 Virtual memory handler (VM) it 116
7.8 Communicationshandler (XL)t 118
7.9 Spooleddevices, e e e e e et 118

8 Real-Time Program Support 121
8.1 Accessingthe [/Opage ennn, 122

‘ 8.1.1 EMT to map the I/O page into the programspace 122
8.1.2 EMT to remap the program region to the simulated RMON 123

8.1.3 EMT topeek at the I/Opage. e e e e e e e e 124

8.14 EMT topokeintotheI/Opage.ottt it .. 125

8.1.5 EMT to bit-set a valueintothe I/Opage 125

CONTENTS

8.1.6 EMT to do a bit-clear intothe I/Opage.
8.2 Mapping to a physical memoryregion Lttt e e e e e e e e
8.3 Requesting exclusive system control e e e e e
84 Lockingajobinmemory e e e e e e e e e e e e e e e e
8.5 Unlockingajobfrommemoryttt et e e e e e
8.6 Suspending/Resuming program executionttt 0.,
8.7 Converting a virtual address to a physicaladdress
8.8 Specifying a program-abort devicereset List,
8.9 Setting processor priority level o o oo L.,
8.10 Setting Job Execution Priority e e e e e e e e e e e e
8.11 Connecting interrupts to real-time jobs . . .‘ P

8.11.1 Interrupt service routines ¢ i i it i i i e e e e e e e e e e ...

8.11.2 Interrupt completion routines e e e e e e e e .
8.12 Releasing an interrupt connection i i e e e e e e e e
8.13 Scheduling a completionroutinettt
8.14 Adapting real-time programs to TSX-Plus.

9 Shared Run-time System Support
9.1 Associating a run-time system withajob
9.2 Mapping a run-time system intoa job’sregion

9.3 Fast ma.pping to shared run-time 74 1o T

10 Program Debugger

10.1 Debuggerrequirements e e e e e e e e e e e e e
10.2 Invokingthe debugger e e e e e e e e e e e

10.2.1 RUN/DEBUG sWitch oo vttt et e e et e i e e e e e

10.2.2 CTRL-D Break ittt e e e e e e e e
103 BPT Instruction o v it ittt e
104 Commands v ittt e
10.5 CTRL-D breakpoiits v oot v ittt ettt e e i e e iiie e
10.6 Addressrelocation e e e e e e e e e e e e e ..
10.7 Internalregisters L L. e
10.8 Datawatchpointst uuen.. O
10.9 Symbolic instruction decoding e e e e e e e e ..
10.10Special motes e e e e e e e e e e e e e e e e e e e

127
127
129
130
131
131
131
132
133
133
134
137
140
143
143
144

145
145
147
148

vi - CONTENTS

11 TSX—-Plus Performance Monitor Feature) 159
11.1 Starting a performance analysis il i e 159
11.2 Displaying the results of the analysis e e e e e e e e 160
11.3 Performance monitor control EMTs e e e 161

11.3.1 Initializing a performance analysis f e e e e e e e e 161
11.3.2 Starting a performance analysis e e e e e e 163
11.3.3 Stopping a performance analysis e e e s 164
11.3.4 Terminating a performance analysis 164

12 TSX—-Plus Restrictions , v ' 167
12.1 SYstém s;ervice call (EMT) differences between RT-11and TSX-Plus 167
12.2 Special program suggestions L.l L e e e e . 169

025 T 1120) 170
12.2.2 FILEX utility o o o v i it e e e et e e et e et e et e et ti e it 170
12.2.3 FORTRAN virtual arrayst v v i i it ittt e et ettt e e e aas 170
12.2.4 IND .ASKx timeoutso i i dv e e e e e e e 170
12.2.5 MicroPower/Pascal. i e e 171
12.2.6 Overlaidprogramsottt v vttt v v v e e e e e e e 171

A SETSIZ Program ‘ 173
A.1 Running the SETSIZ program. e e e e e e e e e e e e e e e e e e 174
A.2 Setting total allocationforaSAVfile. 174
A.3 Setting amount of dynamic memoOTry SPACE . . . « v v v v v v vt e et e e e e e e 175
A.4 Setting virtual-image flagin SAVfile e e e e e et e e e e e e e e 175

B RT-11 & TSX-Plus EMT Codes 177
B.1 TSX-Plus RT-11 Compatible EMTs e e e e e e e e e e e 177
B.2 TSX-PlusSpecific EMTs i i i i it it ittt it e it it 180

C Subroutines Used in Example Programs 183
C.1 PRTOCT—Printanoctalvalue. e e e e e e 183
C.2 PRTDEC—Printadecimalvalue it ieeennn. 183
C.3 PRTDE2—Print a two-digitdecimalvalue 0. 184
C.4 PRTR50—Print a RAD50 word at theterminal 184
C.5 R50ASC—Convert a RAD50 string into an ASCIZ string 185
C.6 - DSPDAT—Print a date value at theterminal 186
C.7 DSPTI8—Display a 3-second format timevalue 186
C.8 ACRTI3—Convert a time value to special 3-second format 187
C.9 ACRDEC—Convert an ASCII decimal value to a numericvalue. 188

C.10 RADASC—Convert a RADIX-60 string to ASCII 189

CONTENTS vii

D DIBOL TSX-Plus Support Subroutines 191
D.1 Record locking subroutinest o 191
D.i.1 Openingthefile it 191
D.1.2 Lockingandreadingarecordttt 192
D.1.3 Writingarecord v v v v v v v v v ittt e e e 193
D.1.4 Unlockingrecordsttt 193
D.1.5 Closingasharedfile 193
D.1.6 Record LockingExample, 194
D.1.7 Modifying programs for TSX-Pluso 194

D.2 Message communicationsubroutines ool oL 194
D.2.1 Message Channels T 194
D.2.2 Sending a Message v vt bt i e e e 195
D.2.83 Checking for Pending Messages« v oot oot i ittt 195
D.2.4 WaitingforaMessage oot vttt ottt 195
D.25 Message Exampleso ot ittt i e e 196

D.3 Usingthe subroutines oo oottt ittt ittt 196
D.4 Miscellaneous functions « v« o v v v ot ittt e e e e e e e e e e e e e e e e e 196

D.4.1 Determining the TSX-Plus linenumber 196

Chapter 1
IntroduCtion

TSX-Plus is a high performance operating system for Digital Equipment Corporation PDP-11 and LSI-11
' computers, supporting as many as forty concurrent time-sharing users. TSX-Plus provides a multi-user
programming environment that is similar to extended memory (XM) RT-11.

e TSX-Plus keyboafd commands are compatible with those of RT-11.
e TSX-Plus supports most RT-11 system service calls (EMTs).

o Most progrnms that run under RT-11 will run without modification under TSX-Plus. This includes
RT-11 utility programs such as PIP, DUP, DIR, LINK, KED, BUP and MACRO.

o TSX-Plus uses RT-11 XM version device handlers.

e TSX-Plus provides PLAS extended memory services such as virtual overlays and virtual arrays, as
well as support for extended memory regions.

TSX-Plus can simultaneously support a wide variety of jobs and programming languages including COBOL~
Plus, FORTRAN, BASIC, DIBOL, DBL, Pascal, C, MACRO, IND, TECO and KED. TSX-Plus is used in
educational, business, scientific and industrial environments. It can concurrently support commercial users
doing transaction processing, engineering users performing scientific processing, system programmers doing
program development, and real-time process control. Numerous application software packages compatible
with TSX-Plus are available from other vendors.

TSX-Plus supports RT-11 system service calls (EMTs) as its basic mode of operation. The result is low
system overhead and substantially improved performance over systems that emulate RT-11 services. TSX-
Plus overlaps terminal interaction time, I/O wait time, and CPU execution time for all jobs on the system.
The result is a tremendous increase in the productivity of the computer system.

In addition to the basic RT-11 functionality, TSX~Plus provides extended features such as: process windows;
shared file record locking; inter-job message communication; program performance monitoring; command file
parameters; logon and usage accounting; directory and data caching; multitasking; and system I/O buffering.

This manual describes all the features unique to TSX-Plus as well as any differences from RT-11. Many of
the special features of TSX-Plus are available as EMTs available to the MACRO programmer. Access to
these features from other languages requires the appropriate subroutine interface.

TSX-Plus will run on any PDP-11 or LSI-11 computer with memory management hardware and at least
256 Kb of memory, although additional memory may be needed for satxsfactory multi-user performance. The
system must also have a disk suitable for program swapping (the swapping disk can be used for regular file
storage as well). Time-sharing lines and serial printers may be connected to the system through either single-
line or multiplexer type interfaces. See the TSX-Plus Installation Guide for a list of interfaces supported for
use with terminals and communications lines. Both hardwired and dial-up time-sharing lines are supported
by TSX-Plus.

2 o CHAPTER 1. INTRODUCTION
1.1 Management of System Resources

1.1.1 Memory Management

TSX-Plus uses the memory management facilities of PDP-11 computers to keep several user jobs in memory
simultaneously and switch rapidly among them. TSX-Plus protects the system by preventing user jobs from
halting the machine or storing outside their program regions. TSX-Plus provides several ways to control the
amount of memory used by individual jobs. Programs may be allowed to use up to 64 Kb of memory and, if
additional space is needed, may also use extended memory regions, virtual overlays and virtual arrays. The
system manager may enable job swapping to accommodate more user jobs than can fit in existing memory.

1.1.2 Execution Scheduling

TSX-Plus provides fast response to interactive jobs but minimizes job swapping by use of the patented
Adaptive Scheduling Algorithm. TSX-Plus permits job scheduling on both an absolute priority basis and by
" a method based on job states. For most applications, the method based on job states is preferred. The state
driven method provides the most transparent time-sharing scheduling, suitable for interactive environments.
The absolute priority method always runs the highest priority executable job, when not servicing interrupts,
regardless of that job’s state. This state free method is most suitable for an environment in which several
real-time jobs must be assigned absolute priorities. TSX-Plus permits both kinds of jobs to co-exist in the
same system, with interactive jobs being scheduled whenever higher priority state free jobs are not executing.

Job priorities may be assigned over a range of 0 to 127. The lowest priority jobs, typically O to 19, are
reserved for fixed priority jobs which can soak up system idle time without disturbing interactive or real-
- time jobs. The medium priority range, typically 20 to 79, is assigned to interactive jobs which are scheduled

according to the Adaptive Scheduling Algorithm which makes time-sharing nearly transparent to several.
users. The highest priority range, typically 80 to 127, is reserved for jobs which must execute according to.

a rigid priority scheme such as might be found in a real-time environment. In addition, real-time jobs may
-execute interrupt service routines at fork level processing or schedule interrupt completion routines to run
as fized high priority jobs.

Job scheduling is controlled by several system parameters relating job priorities, system timing and other
events. The TSX-Plus System Manager’s Guide includes a more complete description of job priority and
scheduling.

1.1.3 Subprocesses and Process Windowing

TSX-Plus allows the time-sharing user to interact with and control multiple executing processes. The
primary process for a user is invoked when the user logs on; subprocesses can easily be initiated by typing
a control character digit sequence. The Process Windowing (tm) facility causes the system to monitor all
characters sent to the terminal and maintain an in-memory image of what is currently. presented on the
terminal screen. This allows the system to restore the terminal display when switching between processes.
Process Windowing also provides a print window function which, when invoked by typing a control character,
causes the current window contents to be printed on a specified hardcopy printer or saved to a disk file.

1.1.4 Directory and Data Caching

TSX-Plus provides a mechanism to speed up directory operations by caching device directories. This reduces

~ disk I/O necessary to open existing files. Two methods of caching file data are also possible to further improve
system throughput. When directory and generalized data caches are full, new data replaces least recently
used existing data. When the shared file data cache is full, new data replaces least frequently used existing
data. Directory and data caching are discussed in the T'SX-Plus System Manager’s Guide.

1.2. SUMMARY OF CHAPTER CONTENTS 3

- 1.1.5 System Administrative Control

TSX-Plus allows the system manager to limit access to the system through a logon facility and to restrict
user access to peripheral devices. These features are described in the TSX-Plus System Manager’s Guide.

1.1.6 Time-sharing lines and CL units

TSX-Plus supports time-sharing terminal lines interfaced through several types of interface cards (see the
TSX-Plus Installation Guide for a list of supported interface protocols). Using the CL feature provided with
TSX~-Plus, other serial devices such as printers, plotters and communications devices can also be attached
using the same types of interfaces. Up to 16 CL units may be attached to TSX—Plus. (Units 0 through
7 are referenced as CLO through CL7 respectively; units 8 through 15 are referenced as C10 through C17
respectively.) These devices may either be permanently assigned as CL units or may be used at some times
as time-sharing lines and other times as I/O devices by having a CL unit take over an inactive time-sharing
line. See the T'SX-Plus User’s Reference Manual description of the SET CL and SHOW CL commands for
more information on using CL units. See the T'SX-Plus Installation Guide for more information on including
dedicated and extra CL units during system generation.

1.2 Summary of Chapter Contents

1.2.1 TSX-Plus Job Environment

TSX-Plus supports the use of extended memory regions through EMT calls compatible with those provided
by the RT-11 XM monitor. This allows the use of virtual overlays and FORTRAN virtual arrays. Users can
also expand programs to use the full 18-bit virtual address space. That is, by giving up direct access to the
I/O page and direct access to fixed offsets in RMON, a program may directly address a full 64 Kb.

1.2.2 Program Controlled Terminal Options

TSX-Plus allows the programmer to modify terminal handling characteristics during program execution.
For example, a program may disable character echoing, use single character activation, use high efficiency
output mode, enable lower case input, activate on field width, or disable automatic echoing of line-feed after
carriage-return. These terminal options may be selected either by issuing the appropriate EMT request or
by writing a special sequence of two or three characters to the terminal.

1.2.3 TSX-Plus EMTs

TSX-Plus supports most of the system service calls (EMTs) provided by RT-11 and, in addition, provides
many more to utilize the special features of TSX-Plus. For example, EMTs are provided to determine
-the TSX-Plus line number and the user name, to send messages to another time-sharing line, to check
for terminal input errors, and to check for activation characters. EMTs related to specific features, such as
detached jobs, inter-program messages or real-time programming, are described in the relevant chapters. The
TSX-Plus EMTs which are not closely related to features described elsewhere are discussed in Chapter 4.

1.2.4 Shared Files, Record Locking and Data Caching

TSX-Plus provides a file sharing mechanism whereby several cooperating programs may coordinate their
access to common data files. Programs may request different levels of shared file access, and control shared
access on a block by block basis. Two methods of data caching are also provided: 1) generalized data caching
which is enabled when devices are MOUNTed; and 2) record caching which is only available to shared

4 CHAPTER 1. INTRODUCTION

files. Directory caching is also enabled by the MOUNT request. This accelerates directory searching for file
LOOKUPs.

1.2.5 Inter-program Message Communication

TSX-Plus offers ‘a message communication facility that allows running programs to exchange messages.
Messages are transmitted through named message channels. A program can queue messages on one or more
- message channels. Receiving programs can test for the presence of messages on a named channel and can
suspend their execution until a message arrives. Receiving programs may also schedule a completion routine
. to be entered when a message arrives and continue other processing in the meanwhile. A message can be
queued for a program that will run at a later time.

1.2.6 Programming for CL and Special Device Handlers

TSX-Plus provides a special serial communications line facility implemented as a device handler (CL), which

may be used as a general purpose replacement for LS and XL (XC on the PRO). An interface port may .

be either defined as a time-sharing line or a.communications port. Time-sharing lines may be later “taken
over” as communications lines if the CL facility is included during system generation, either by a keyboard
command or from within a program. Normal read/write functions may be used to CL units, but many
special control features are available as special functions (.SPFUN requests). Certain other devices have
special requirements or characteristics such as: DM, IB and VM.

1.2.7 Real-time Support

TSX-Plus provides real-time program support services that allow multiple real-time programs to run concur-
rently with normal time-sharing operations. Real-time programs may optionally lock themselves in memory,
directly access the I/O page, redefine their memory mapping, and connect device interrupts to subroutines
within the program.

1.2.8 Shared Run-time System Support

TSX~Plus allows one or more shared run-time systems to be mapped into the address space of multiple TSX-
Plus time-sharing jobs. This saves memory space when multiple users are running the same types of programs
(e.g., COBOL—Plus or DBL) and can also be used in situations where programs wish to communicate through
a shared data region.

1.2.9 Program Debugging Facility

TSX-Plus includes a symbolic (MACRO instructions) debugger with ODT styled commands. Debugger
support is optionally included depending on a system generation parameter. The debugger need not be
linked with the program being debugged and does not decrease the virtual memory space available to
programs. The debugger may be invoked as part of the RUN command, with a BPT instruction from within
the program or with a special keyboard control character.

1.2.10 Program Performance Monitor Facility

TSX~Plus includes a performance analysis facility that can be used to monitor the execution of a program and
determine what percentage of the run time is spent within certain program regions. When the performance
monitor is being used, TSX-Plus examines the program being monitored at each clock tick (50 or 60 times
. per second) and notes the value of the program counter. On completion of the analysis, the TSX-Plus
performance reporting program can produce a histogram of the time spent in various parts of the monitored
program.

1.2. SUMMARY OF CHAPTER CONTENTS 5

1.2.11 Differences from RT-11

Some inevitable differences exist between RT-11 and TSX-Plus. The TSX-Plus User’s Reference Manual
describes the additional keyboard commands provided by TSX-Plus, the mincr differences in some com-
mands, and the RT-11 keyboard commands not supported by TSX-Plus. Some other differences between
RT-11 and TSX-Plus may not be obvious. The FORMAT utility is not supported. A few system ser-
vice calls (EMTs) behave slightly differently in the two systems and some RT-11 EMTs are not supported
by TSX-Plus (notably those supporting multi-terminal operations). A section is also included on special
use and programming characteristics of some utility programs which may cause confusion because of some
non-obvious interaction of their features with TSX-Plus.

1.2.12 Appendices

Appendix A describes the SETSIZ utility program which may be used to control the amount of memory
available to programs.

Appendix B provides a table of EMT function and subfunction codes, and brief descriptions of both RT-11
and TSX-Plus EMTs; these are useful in conjunction with the SET EMT TRACE command.

Appendix C contains listings of common subroutines called by the example programs throughout this
manual.

Appendix D describes a library of subroutines which are available to the DIBOL user to take advantage
of some of the special features of TSX-Plus.

CHAPTER 1. INTRODUCTION

N

| Chapter 2

TSX-Plus Job Environment

2.1 Simulated RMON

While TSX~-Plus implements the system monitor differently than RT-11, it does simulate relevant RMON
fixed-offset locations. (See the section below on user virtual address mapping.) TSX-Plus defines certain
special negative offset values for use with .GVAL (they cannot be obtained by reading relative to the simulated
base of RMON). These special negative offsets are described in Chapter 4. Some notable features of the
simulation of offsets defined by RT-11 are described in the following table:

Offset | Interpretation

276 | This word is copied from RT-11 during TSX-Plus initialization and indicates the
version and release level of RT-11.
366 | If the program is being run from a command file, then bits 8, 12, and 15 will be set
in this word (mask 110400).
If the program is not being run from a command file, then this word will be clear
| (0). '
372 | Bit 15 (mask 100000) is always set in this word by TSX-Plus; it is always clear
under RT-11

2.2 Virtual and physical memory

The memory space that is accessible by a job is known as the virtual address space for the job. Because of
the architectural design of the PDP-11 computer which uses 16 bits to represent a virtual memory address,

" the maximum amount of virtual address space that can be accessed at one time by a Jjob is limited to 65,536

(64 Kb) bytes. Thus, the virtual addresses for a job range from 000000 to 177777 (octal).

The actual amount of virtual address space available to a job may be as large as 64 Kb but it may be restricted
to less than this amount. The following factors control the size of the virtual address space available to a

job:
o The maximum amount of memory allowed for each job as determined by the HIMEM system generation
parameter.

e The amount of memory specified with the MEMORY keyboard command (initialized by the DFLMEM
system generation para.méter).

e The memory limit reserved in the disk file image by the SETSIZ program (see Appendix A).

7

8 CHAPTER 2. TSX-PLUS JOB ENVIRONMENT

e The amount of memory acquired by use of the TSX-Plus EMT that expands or contracts the job
space.

The physical address space for a PDP-11 computer is not limited to 64 Kb. The maximum physical address
space depends on the model of PDP-11 and the amount of memory installed on the computer. LSI-11/23
and 11/34 computers can access up to 256 Kb of physical memory. The 11/23-Plus, 11/73, 11/24 and 11 /44
computers can access up to 4 Mb of memory.

The process by which an address in the job’s virtual address space is transformed into an address in the
physical address space is known as mapping. The mapping of the virtual address space for a job into the
physical memory space assigned to the job is performed by the memory management hardware facility of
the PDP-11 computer. This facility divides the virtual address space into eight sections, called pages, each
of which can address up to 8 Kb of memory. The mapping of a page of virtual address space to a page of
physical address space is accomplished by setting up information in a page address register (PAR). There
is one page address register for each of the eight virtual address pages. These registers are not directly
“accessible by a user job but are loaded by the TSX-Plus system when it starts a program, changes the size
of a program, or switches execution between different jobs. The relationship between the eight pages of
memory and the corresponding sections of virtual address is shown in the following table:

Page | Virtual address range
0 000000017777
020000-037777
040000-057777

© 060000077777
100000117777
120000137777
140000157777
160000-177777

D U DN

Because of the design of the memory management system in the PDP-11, it is not possible to divide the
virtual address space more finely than eight pages of 8 Kb each. However, it is possible to map each page of
virtual address space into any section of physical memory. (This facility allows TSX-Plus to keep multiple
user jobs in physical memory and to switch rapidly among them by reloading the page address registers.)

2.3 User virtual address mapping

The virtual address space accessed by a job can be divided into five categories:

o Normal program space—which is used by instructions and data for programs.

o Simulated RMON—This is the virtual address region from 160000 to 177777 that is mapped to a
simulated RMON (RT-11 resident monitor).

o Extended memory regions—Programs can create regions in physical memory and then cause one or
more pages of virtual address space to be mapped to the regions.

® Shared run-time systems—Several TSX-Plus jobs can cause a portion of their virtual address space

“to be mapped to the same area of physical memory. This allows several users to execute the same

" program or share common data without having to allocate a separate area of physical memory for each
user.

o System I/O page—TSX-Plus real-time programs may map the system I/O page into their virtual
address space.

These categories of virtual address space are discussed in the sections below.

R

2.4. NORMAL PROGRAMS AND VIRTUAL PROGRAMS 9

2.4 Normal programs and virtual programs

~ Programs run under TSX-Plus may be divided into two categories: normal programs and virtual programs.
The only difference between the two types of programs is the manner in which TSX-Plus handles page 7
(addresses 160000-177777) of the virtual address space. In the case of normal programs, page 7 is mapped to
- a simulated RMON. RMON is the name of the resident RT-11 monitor. When running under RT-11 this is
the actual system control program. When running under TSX-Plus, the simulated RMON does not contain
any of the instructions that are part of RT-11 but contains only a table that provides information about the
system and the job. This information includes such items as the system version number, and information
about the hardware configuration. The cells in this table are known as RMON fized offsets. Their position
within the table and their contents are documented in the RT-11 Software Support Manual, although not
all cells are relevant to or maintained by TSX-Plus.

The address of the base of the simulated RMON table is stored in location 54 of the job’s virtual address

-space. Modern RT-11 and TSX~Plus programs should not directly access the RMON table but rather should
use the .GVAL EMT to obtain values from the table. However, since some older programs and some RT-11
utility programs directly access the RMON tables, it is mapped through page 7 for normal programs. As a
result, normal programs are restricted to using pages 0 to 8 (56 Kb) for their own instructions and data.

Note that when simulated RMON is mapped into the job’s virtual address space, it is mapped with read /write
access. This makes it possible to corrupt data in the simulated RMON which should only be managed by
the system. If a job does corrupt data in the simulated RMON cells, then it is possible for the job to receive
erroneous error messages or to hang until the system is restarted.

Virtual programs are programs that do not require direct access to the simulated RMON table. These
programs may still access the RMON values with the .GVAL and .PVAL EMTs. Since direct access to the
simulated RMON is not needed, page 7 is available for the program to use for its own instructions and data,
thus providing a total of 64 Kb of virtual address space A program may indicate that it is a virtual program
by any of the followmg techmques

e Set bit 10 (VlRT$—mask 2000) in the Job Status Word (location 44) of the SAYV file. See Appendix A
for information about how this bit can be set by use of the SETSIZ program.

e Use the /V LINK switch (/XM switch for the LINK keyboard command) which stores the RAD50
value for VIR in location O of the SAYV file.

e Use the TSX-Plus SETSIZ program (see Appendix A) and indicate that more than 56 Kb of memory
is to be used for the program.

2.5 Access to system I/O page

The system I/0 page is an 8 Kb section of addresses which is not connected with ordma.ry memory but
rather is used to control peripheral devices and hardware operation. Access to the I/O page is risky in that
a program can interfere with peripheral devices and cause system crashes. For this reason, programs do not
ordinarily have access to the I/O page. However, a program that is running with MEMMAP privilege may
issue a system service call to cause page 7 (160000-177777) of the job’s virtual address space to be mapped
to the system I/O page. See Chapter 8 for more information on real-time programs.

2.6 Job priorities

TSX-Plus jobs may be assigned execution priorities to control their scheduling relative to other jobs. The
priority values range from 0 to 127. The priority values are arranged in three groups:

10 CHAPTER 2. TSX-PLUS JOB ENVIRONMENT

e The fixed-low-priority group consists of priority values from 0 up to the value specified by the PRILOW
sysgen parameter.

e The fixed-high-priority group ranges from the value specified for the PRIHI sysgen parameter up to
127. ‘

. @ The middle priority group ranges from (PRILOW+1) to (PRIHI-1).

Job scheduling is performed differently for jobs in each category. Jobs in the fixed-high-priority range
are scheduled strictly according to their priority and execute before any other job with lower priorities,
including all interactive and fixed-low-priority jobs. Jobs in the interactive range are scheduled according
to a patented algorithm which gives precedence to terminal operations. Jobs in the fixed-low-priority range
are also scheduled strictly according to priority, but execute only when no other jobs of higher priority are
executable, including all fixed-high-priority and interactive jobs.

Job priorities may be influenced by the SET PRIORITY and SET PROCESS/PRIORITY commands (see.

the TSX-Plus User’s Reference Manual). Limits may be set on job priorities by the TSAUTH program and
the SET MAXPRIORITY command (see the TSX-Plus System Manager’s Guide). An executing program
may also influence its own priority (see EMT 375, function 0,150 in Chapter 4). The current priority for
a job and the maximum authorized priority can be displayed by use of the SHOW PRIORITY keyboard
command, and may be obtained from within programs with the .GVAL request.

See the description of EMT 375 function 0,150 in Chapter 4 and the T'SX-Plus System Manager’s Guide for
more detailed discussions of job priorities and their effect on job execution.

2.7 Extended memory (PLAS) regions

.Progra.ms running under TSX-Plus have available the Programmed Logical Address Space (PLAS) facility
that is compatible with the RT-11XM monitor. This facility allows a program to allocate regions of physical

memory and then create virtual windows that can be used to access the regions. There are 7 system service
calls (EMTs) provided for PLAS support:

EMT Meaning

.CRRG Create a region

.ELRG Eliminate a region

.CRAW | Create a virtual address window

.ELAW Eliminate a virtual address window

.MAP Map a virtual window to a region

.UNMAP | Unmap a virtual window

.GMCX | Get information about the status of a window

A region is an area of physical mémory set aside for use by a job in addition to its normal job space. The
.CRRG EMT is used by a program to request that a region be created. The size of a region is not restricted
to 64 Kb and may be as large as the physical memory installed on the system (less the space used by the
TSX-Plus system, device handlers, tables, and the remainder of the program). Up to eight unnamed regions
may be created by each job.

PLAS memory regions can be grouped into two main categories: named regions and unnamed regions.
Unnamed PLAS regions can only be accessed by the job that created them and only remain in existence as
long at the job that created them is running. They are always deleted when the job exits or chains. Named
PLAS regions may be shared between multiple jobs. Use of named PLAS regions requires SYSGBL privilege.
Unlike unnamed PLAS regions, named regions are not necessarily deallocated when the program which
created the region terminates execution. Named regions may be used to communicate between programs,
to hold common code executed by multiple users (e.g., shared run-times), and to pass information from one
program to another program—possibly run at a later time.

2.7. EXTENDED MEMORY (PLAS) REGIONS 11

In addition to supporting named global PLAS regions in a fashion compatible with RT-11, TSX-Plus also

provides an additional facility known as local named regions. Local named regions are regions which can

only be accessed by the job that created them. Their names are private to the creating job and more than

one job may create (different) local regions with the same name. Local named regions are deallocated when
- the crea.tmg job specifies that they are to be eliminated or when the creating job logs off.

Local named regions are allocated memory space associated with the crea.tmg job and are swapped in and
out of memory with the job (like unnamed regions). Global named regions are allocated memory space at
the top of the area of memory used for jobs. They are never swapped out of memory and are only deallocated
when a job eliminates the region. Thus global named regions may continue to occupy memory after the job
that created the region logs off. Caution should be exercised when creating global regions since it is possible
to lock jobs out of memory by creating large global regions.

Local named regions are distinguished from global named regions at creation time by setting bit 0 (mask
000001) in the status word (the third word—R.GSTS) of the region definition block used with the .CRRG
EMT.

Summary of Characteristics for Extended Memory (PLAS) Region Types

Region Type | Max lifetime of region | Accessible by | Swapped out of
other jobs? | memory with job?

.Unnamed Until program exits No Yes
Named local | Until job logs off No - Yes
Named global | Indefinite - Selectable No

A SHOW REGIONS keyboard command may be used to display information about local and global named
regions accessible by the job.

The REMOVE keyboard command may be used to eliminate a local or global named region. The form of
this command is:

REMOVE region

In order to access a region, a program must use the . CRAW and .MAP EMTs to create a virtual window and
map the virtual window to a selected portion of the region. A virtual window is a section of virtual address
space mapped to a region rather than to the normal job physical address space. Up to eight virtual address
windows can be created by each job. The same virtual window (i.e., the same range of virtual addresses)
may be mapped to different regions or different sections of the same region at different times by use of
the .MAP EMT. This allows a program to selectively access different sections of code or data in extended
memory regions during the course of its execution.

Note that RT-11 allows a .CRAW and .MAP with a region ID equal to zero. TSX-Plus requires that
the window definition block specified by the .MAP EMT contain a non-gzero region ID returned from the
successful creation of a region by use of the .CRRG EMT. TSX-Plus will return an error code 2 on the
.MAP EMT when a zero region ID is specified.

When an unnamed or named local PLAS memory region is created by use of the .CRRG EMT, space is
allocated in physical memory and in a TSX-Plus region swap file. Whenever a job is swa.pped out of memory,
its extended memory regions are swapped to the region swap file. Space in the region swap file is allocated
and deallocated dynamically as regions are created and eliminated. In order to create a region, space must
‘be available in physical memory and in the region swap file.

The PLAS facility is most often used implicitly through the virtual overlay and virtual array features. Using
the PLAS facilities, it is possible for a single job to use all of the physical memory space available on a
system (exclusive of the space used by the TSX-Plus system, handlers, tables, etc.). Proper use of the
PLAS facilities such as with reasonable size virtual overlays or arrays can lead to substantial performance
unprovements for programs. Excessive use of memory space with the PLAS facility can lead to excessive job
swapping and degraded system performance.

12 CHAPTER 2. TSX-PLUS JOB ENVIRONMENT

2.8 Shared run-time systems

" A shared run-time system is a program or data area in physical memory that can be accessed by multiple
TSX-Plus jobs. Shared run-time systems are somewhat similar.to extended memory regions in that they are
both allocated in extended memory areas and must be accessed by mapping a portion of the job’s virtual
address space to the physical memory area. The difference is that extended memory regions are private
to the job that creates them and may not be accessed by any other job. Shared run-time systems can be
simultaneously accessed (hence “shared”) by any number of TSX-Plus jobs. Another difference between
regions and shared run-time systems is that regions can be created dynamically and can be swapped out of
memory; shared run-time systems are specified when the system is generated and reside in memory as long

as the system is running. See Chapter 9 for more information on shared run-time systems.

2.9 VM pseudo-device handler

While the VM handler is not actually mapped into a job’s memory space, its use can dramatically increase
job performance. The VM handler enables the use of a portion of physical memory as a pseudo-disk device.
This permits very rapid access to programs and data which are placed on the VM unit. For programs such
as compilers which heavily utilize overlay segments, a considerable speedup can be achieved by loading them
onto the VM device. A similar improvement for overlaid programs can be obtained with the general data
cache facility. However, when the data cache is full the least recently used blocks are lost. The presence
of particular programs and their overlay segments in memory can be guaranteed by copying them to the
VM pseudo-device. Another example of the usefulness of the VM device is with compilers which heavily
use temporary work files. Depending on the number of write operations, which are not helped by general
‘data caching, significant improvements in speed can be obtained by directing the work files to the VM
pseudo-device.

In order to use the VM device, it must be included in the device definitions during TSX-Plus system
generation. An upper limit must also be placed on the amount of memory available to TSX-Plus. The
physical memory above that available to TSX-Plus can then be used as a memory based pseudo-disk. If
for some reason, it is desirable to use less than all of the memory above the top of TSX-Plus, the SET VM
BASE command can be used to restrict the memory available to VM. Each time TSX~-Plus is restarted, VM
must be initialized just as you would for a new physical disk or a fresh logical subset disk. For example:

INITIALIZE VN:

Only one unit (VMO:) is available. However, logical subset disks may be created within the VM pseudo-
device to partition it if necessary. On initialization, the VM handler automatically determines the amount
of memory available to it.

See the TSX-Plus System Manager’s Guide for more information on the use of data caching (general and
shared files) and the VM pseudo-disk. See Chapter 7 for descriptions of the special function requests
supported by VM.

2.10 User command interface

TSX-Plus provides a method of intercepting and preprocessing user typed commands. This is called the
“User Command Interface (UCI)”. This may be implemented by writing a program to handle user input and
enabling the facility with the SET KMON UCI command. After UCI is enabled, the TSX-Plus keyboard
monitor will run the user-written UCI program each time it needs a new command. The program must
prompt the user for a new command, accept the command, process it as desired and may optionally pass
the command to the TSX-Plus keyboard monitor by doing a spectal chain ezst. A special chain exit is
performed by issuing the .EXIT request with bit -5 (mask 40) set in the job status word and with RO cleared.
Any commands to be executed by the keyboard monitor are passed through the chain data area. See the

2.10. USER COMMAND INTERFACE 13

RT-11 Programmer’s Reference Manual for more information on special chain ezits. Commands passed to
the TSX-Plus keyboard monitor in this fashion behave as though the keyboard monitor obtained them from
a command file. A command file name may also be passed to the keyboard monitor by passing a command
of the form “@name”. If a command file name is passed to the keyboard monitor, then it must be the last
or only command passed in the chain data area. When a command file name is passed in this manner, then
all of the commands included in the command file are executed by the keyboard monitor before returning
to the user-written UCI program for another command.

The following program provides a simple example of the techniques for writing a User Command Interface
program. This program accepts a command from the keyboard and passes it through to the TSX-Plus
keyboard monitor if it is a legal command.

Example

.TITLE NYENON
.ENABL LC
Simple example of User Command Interface

Refuses to pass SET KNON SYSIEN, but otherwise does nothing but
pass commands thru to KNON.

.NCALL .PRINT,.EXIT,.GILIN,.SCCA
Js¥ = 44 ;Job status word address
SPXIT$ = 40 ;Special exit flag to pass command to KNON
NONPIR = b4 ;Pointer to base of RNON
SYSGEN = 372 ;0ffset into RNON of SYSGEN options word
BEL =7 sASCII bell
BS = 10 ;ASCII backspace
LF = 12 ;ASCII line feed
-FF = 14 ;ASCII form feed
[+ 3 =16 ;ASCII carriage return
ESC = 33 ;ASCII escape
.DSABL GBL ;Disable undefined globals
START: .SCCA #AREA,#ITSTAI ;Inhibit control-C abort
MOV Q#MONPIR,RO ;Get pointer to base of RNON
IST SYSGEN (RO) ;Are we running under ISX?
BPL QUIT ;Normal exit if not
NOV #ITYPE,RO ;Point to ENI arg block to
ENT 376 ;Get ISX-Plus terminal type
ASL RO ;Convert to word offset
CNP RO,#4 ;Legal types are unknown, VI62 and YTI100
BLOS 13
CLR RO sIf not VIb2 or VI100, make unknown
1$: NOV RO,R1 ;Save terminal type
LPRINT CLRSCR(R1) ;Clear the screen
PRINT #MENU ;Display simple menu
NOV #SEIRUB,RO ;Point to ENT arg block to
ENT 376 ;Set rubout filler character
2%: .PRINT CENTER(R1) ;Nove to screen center and clear the line
.GILIN #BUFFER,#PRONPT ;Accept input line
CALL MAICH ;8ee if it is legal
BCS 24 ;Repeat 1if illegal command
NOV #1000,SP ;Ensure stack pointer safe
CALL MOVCMND ;Move command from buffer to chain data area
BIS #SPXIT$,eRJISY¥ ;Set special chain exit bit in JSY
CLR 0 ;Required for special chain exit
QUIT: .EXIT ;And pass command to KNON
;Simple matching. Easy to defeat by
; inserting extra spaces!!!
NAICH: NOV #BUFFER,R2 ;Point to beginning of input buffer
MoY #ILLCND,R3 ;Point to beginning of illegal command
1$: TSIB (r2) ;At end of input string?
BEQ 24 ;Yes, matched so far, probably illegal
CNPB (R2)+, (R3)+ ;No, test through end of illegal string
BNE (1] ;No match, not illegal command
CNP R3,#ILLEND ;Past end of illegal command?
BLO 1$;No, keep checking
2%: ' SEC ';Strings match, signal ilTegal command

14

98:
10$:

.

»
MOVCND:
1$:

28:

3%:

98:

AREA:
TISTAI:
TIYPE:
SETRUB:

CLRSCR:

PRONPT:

ILLCND
ILLEND
BUFFER
BUFEND

s oo se se

BR
CLC

NOV
MOV
NOVB
BNE
CLRB
BR
CNPB
BNE
CLRB
MOVB
CNP
BLO
CLRB
SUB
NOV
RETURN
.BLK¥
.WORD
.BYIE
.BYIE
.¥ORD
.WORD
.WORD
.¥ORD
.NLIST
.BYIE
.BYIE
.ASCII
.ASCII
.ASCII
.ASCII
.ASCII
.ASCII
.ASCII
.ASCII
.ASCII
.NLIST
.REPT
.BYIE
.ENDR
.LIST
.BYIE
.ASCII

.BLKB

10$

;:Nove command from input buffer

CHAPTER 2. TSX-PLUS JOB ENVIRONMENT

;Strings do not match, signal legal command

to chain data area.

#BUFFER,R2 ;Point to beginning of input string
#512,R3 ;Point to chain data area

(r2)+,R0 ;Get next char

28 - ;Continue if not nul

(R3)+ ;If end of input command

¢ ; then done

R0,#°\ ;Command separator?

3¢ ;No, move it

RO ;Yes, replace with nul

RO, (R3)+ ;Nove command into chain data area
R2,#BUFEND ;Do not want to overflow

14 ;Xeep moving if characters left

-1(R3) ;Mark end of command (ensure it is ASCIZ)
#5612,R3 ;How many bytes did we move?

13,0#510 ;Nark the number for .CHAIN

10 ;GP ENT argument area

0 ;Terninal status word for .SCCA

0,137 ;ENT arg block to get terminal type
0,162 ;ENT arg block to control terminal funtions
‘A ;Function code - set rubout filler

' ;Rubout filler = underline
CLRUNK,CLR62,CLR100 ;Terminal specific screen clears
CNTUNK,CNI62,CNT100- ;Terminal specific move and clear
BEX

FF ,FF ,FF,CR,200 ;Emulate clear screen with 3#(8LFs)
ESC, *H,ESC, *J,200 ;VI62 clear screen sequence
<BSC>/[H/<ESC>/[3/<200> ;VI100 clear screen sequence
<CR><LF><LF><LF>/ /<200>

<ESC>/Y% / ;Line 6, column 1

<ESC>/X/ ;Erase to end of line

/ /<200> ;Nove to column 6

<ESC>/[6;62/ ;Line 6, column 6
<ESC>/[2K/<200> ;Erase entire line

<LP><LF><LF>/ #aadn Simple Nenu *x52/<200>
<BEL>/Command : /

32.

BS ;Backspace to beginning of field
<200> ;End of string

/SET KNON SYSTEN/ ;Do not permit UCI disable

81. ;Command line input buffer

START

s

Chapter 3

Program Controlled Terminal
Options |

3.1 Terminal input/output handling

The terminal keyboard and screen provide the principal interface between a time-sharing user and the TSX-
Plus operating system. TSX-Plus accepts characters from the keyboard, echoes them to the screen, and
stores them in a separate buffer for each time-sharing user. When a program (either a user written program,
a utility, or the operating system keyboard monitor) requests input from the terminal, characters are removed
from the internal buffer and passed to the program.

3.1.1 Activation characters

The low-level requests for input from a program can call for a single character (.TTYIN), for an entire line

" (.GTLIN, .CSIGEN, .CSISPC), or for a whole block of characters (.READ). Since the requests for a whole

line of input are most common, TSX~-Plus improves overall efficiency for many users by retaining characters
typed at the keyboard in an internal buffer until a special character is typed which indicates that the line of -
input is complete. This special character, which indicates that keyboard input is ready, is called an activation
character. The standard activation characters are carriage return and line feed. Several control keys will
also cause immediate system response. For example, CTRL-C is used to abort the execution of a running
program. If the program is waiting for input, one CTRL-C will cause an immediate abort. If the program is
not waiting for input, it is necessary to type two CTRL~Cs to get the system’s attention to abort a program.

When a program requests terminal input, TSX-Plus puts the program in a suspended state until an activation
character is typed. This state, in which a program is waiting for input but no activation character has been
typed, is identified as the TI state by the SYSTAT command. When characters are typed at the terminal,
TSX-Plus responds quickly and stores them in the terminal input buffer for that line, then returns to
process other jobs which need its attention. Thus, the amount of time the CPU spends processing input
characters is kept to a minimum, and the amount of CPU time used by a program in the TI state is also
very small. Some programs request single characters with the .TTYIN request. Normally, these programs
are treated by TSX—Plus in the same way as those requesting lines of input (e.g., .GTLIN requests). That
is, the job is suspended, input characters are stored in the terminal input buffer, and characters are only
passed to the program after an activation character is typed. If a program requests a character with a single
.TTYIN, the user can type as many characters as the terminal input buffer will hold (allocated during system

' genera.tlon), but the program will remain suspended and no characters are passed to the program. Then,

when an activation is typed, the program is restored to an active state, the first character in the input buffer
is passed to the program and processing continues. If the program requested no more characters, then on
program exit the remainder of the input buffer, including the activation character, would be passed to the
next program (usually the keyboard monitor) which would try to interpret them. This may result in an
invalid command error message.

15

16 : CHAPTER 8. PROGRAM CONTROLLED TERMINAL OPTIONS

3.1.2 Single character activation

TSX-Plus gives the programmer a wide variety of ways to influence the normal input scheme outlined
above. One of the most common methods is the use of single character activation. With this technique, all
characters are regarded as activation characters. If a program requests a single character with a .TTYIN,
then as soon as a character is typed and becomes available in the input buffer, it is passed to the program
and the program resumes execution.

The standard way to request single character activation under RT-11 is by setting bit 12 in the user’s Job
" Status Word (JSW). Under TSX~-Plus, this is not by itself sufficient to cause single character activation.
The reason is that quite a few programs designed for a single user environment use this method in a way
that causes constant looping back and consequently burns up a large amount of processor time. In a single
user environment this is of minor importance since no other jobs are trying to use the processor at the same
time. In a multi-user system, this is wasteful and should be avoided. Therefore, under TSX~Plus, setting
bit 12 in the JSW is not by itself sufficient to initiate single character activation. It is necessary BOTH to
set bit 12 and to issue a special command to TSX-Plus indicating that single character activation is actually
desired. This may be done in any of the following ways:

e Specify the /SINGLECHAR switch with the RUN or R command that starts the program.
o Issue a SET TERMINAL SINGLE command.

e Use the INSTALL command to install the program with the SINGLECHAR attribute (the description
of the INSTALL command is in the TSX-Plus System Manager’s Guide.

o Use the “S” program controlled terminal option described in this chapter.

Note that when a program is in single character activation mode, the system does not echo terminal input,
it is the program’s responsibility to do so.

The situation in which a program requests single characters but none are available in the input buffer also
receives special treatment. The single character input request is eventually coded as EMT 340. The .TTYIN
request repeats this request until a character is finally obtained, whereas the .TTINR request supposedly
permits processing to continue if no character is available. In fact, the EMT 340 call will suspend the job
until a character is available from the input buffer. This is referred to as stalling on a .TTYIN. The purpose
is to avoid the unnecessary looping back to get a character. Under RT-11, if the programmer decides not
to wait for a character to become available, but rather proceed with execution, it is only necessary to set
bit 6 (100 octa.l) in the Job Status Word. Some programs abuse this technique and would waste the system
resources in a time-sharing environment. TSX-Plus requires confirmation that the user is aware of the extra
system load that could be caused by the constant looping back to check for a character. If you wish to have
TSX-Plus return from the EMT 340 with the carry flag set if a character is not available, you must set bit
6 in the Job Status Word and also do one of the following things:

o Specify the /SINGLECHAR switch with the RUN or R command that starts the program.
e Issue a SET TERMINAL NOWAIT command.

@ Use the INSTALL command to install the program with the NOWAIT attribute (the descnptlon of
the INSTALL command is in the T'SX-Plus System Manager’s Guide.

e Use the “U” program controlled terminal option described in this chapter.

3.2.. PROGRAM CONTROLLED TERMINAL OPTIONS 17

3.1.4 Non-blockmg -TTOUTR

»Norma.lly when a program sends output to the terminal using a .WRITE, .PRINT, .TTYOUT, or .TTOUTR
EMT, if the terminal output buffer is full, TSX-Plus suspends the program urtil space becomes available in
the output buffer. If you wish to use the .TTOUTR EMT to send output to the terminal and have TSX-Plus
return from the EMT with the carry flag set if the output buffer is full, you must do the following things:

@ Use l;he TTOUTR EMT rather than .TTYOUT.
o Set bit 6 in the Job Status Word.
e The instruction following the TTOUTR EMT must not be [BCS .-2].
e The program must be run with no-wait mode by performing one of the following actions:

— Specify the /SINGLECHAR qualifier with the RUN or R command that starts the program.
— Issue a SET TERMINAL NOWAIT command.
— Use the INSTALL command to install the program with the NOWAIT attribute.

- — Use the “U” program controlled terminal option described in this chapter.

TSX-Plus allows many other ways of modifying terminal input and output for special circumstances. These
are provided to allow maximum versatility in the system while still maintaining the high efficiency needed
in a multi-user environment. The programmer communicates the need for special terminal handling to the
system through the use of special program controlled terminal options. These are described individually in
the next section.

3.2 Program controlled terminal options

The following table lists the functions which may be used during program execution.

Function Character | Meaning

Set rubout filler character

Enable VT52 & VT100 escape-letter activation
Disable VT52 & VT100 escape-letter activation
Define new activation character.

Turn on character echoing

Turn off character echoing

Disable subprocesses

Enable lower case input

Disable lower case input

Enable deferred character echo mode
Disable deferred character echo mode

Set transparency mode for output

Suspend command file input

Restart command file input

Reset activation character

Set activation on field width

Turn on high-efficiency TTY mode

Turn on single-character activation mode
Turn off single-character activation mode
Enable no-wait TT input test

Set field width limit

Turn tape mode on

Turn tape mode off

Disable echo of line-feed after carriage-return
Enable echo of line-feed after carriage-return

NHHI<LAHuTOTWOZErRu-OdaEoQw >

18 o - CHAPTER 3. PROGRAM CONTROLLED TERMINAL OPTIONS

' These functions have a temporary effect and are automatically reset to their normal values when a program
exits to the keyboard monitor. They are not reset if the program chains to another program until control is
finally returned to the monitor. Some terminal options (notably high-efficiency: and single-character modes)
are incompatible with, and override, some other terminal options.

TSX-Plus provides two methods for a running program to dynamically alter some of the parameter settings
relating to the user’s timesharing line. The preferred method of selecting these functions is to use the TSX-
Plus EMT for that purpose. This is readily available from MACRO programs and an appropriate MACRO
subroutine should be linked into jobs written in other languages. The form of the EMT to select program
controlled terminal options is:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,152
.WORD function-code
.WORD argument-value

" where function-code is the character from the table above which selects the terminal option, and argument-
value may be a third value used only with some of the functions. An advantage of the EMT method
of selecting program controlled terminal options is that they may be used even when the terminal is in
high-efficiency mode.

Example

TITLE ENINIH
.ENABL LC
; Demonstrate ISX--Plus program controlled terminal options using
; the ENT method.
.MCALL .GVAL, .PRINT, .EXIT,.ITYIN
.GLOBL PRIDEC
s+ Determine and display current lead-in char
; Default = 35, but don’t count on it

START: .GVAL #AREA,#-4. ;:Determine current leadin character
NOV RO,R1 ;Save it
.PRINT #LEADIS ;"Current lead-in is"
NOV R1,RO ;Retrieve lead-in char value
CALL PRIDEC ;Display it

.PRINT #LEADND
; Set rubout filler character
NOV #SEIRUB,RO ;Point to ENT arg block to
ENT 376 ;Set rubout filler character
; Now demonstrate the current rubout filler character
; Back space is the default, which we changed to underline

.PRINT #IRYIT ;"Enter some and delete them"
NOV #BUFFER,R1 ;Point to input buffer
1$: ITYIN ;:Get next char into input buffer
CNPB RO,#12 ;End of input (CR/LF pair)?
BEQ 24 ;Yes, terminate input
CNP R1,#BUFEND ;Buffer overflow?
BLO 1 ;Get more if not
2%: .PRINT #THANKS
EXIT
AREA: .BLX¥ 10 ;General ENT arg block
SETRUB: .BYIE 0,152 ;ENT arg block to
JMORD A ;Set rubout filler character
.WORD ’ ; to underline

TRYIT: .ASCII /Enter some characters at the prompt and then /
© .ASCII /erase them with/<15><12>/DELEIE or CIRL-U./ .

.ASCII / They should be replaced with underlines./<15><12>/%/<200>
LEADIS: .ASCII /We don’t care that the current lead-in char is /<200>
LEADND: .ASCIZ /./
THANKS: .ASCIZ <15><12>/STOP -- Thank you./
BUFFER: .BLKB 81.
BUFEND:

.END START

N/

3.2. PROGRAM CONTROLLED TERMINAL OPTIONS 19

When it is not practical to incorporate the EMT method of selecting program controlled terminal options
into a program, an alternate method using a lead-in character may be used. This is conveniently done by
sending a sequence of characters to the terminal using the normal terminal output operations of the lan-
- guage. Examples are the FORTRAN TYPE, COBOL-Plus DISPLAY, BASIC PRINT, and Pascal WRITE
statements. Program controlled terminal options are selected by having the running program send the
lead-in character immediately followed by the function character and, for some functions, a third character
defining the argument value for the function. TSX-Plus intercepts the lead-in character and the one or two
following characters and sets the appropriate terminal option. It does not pass these intercepted characters
through to the terminal. The default value for the lead-in character is the ASCII GS character (octal value
35; decimal value 29). However, the lead-in character may be redefined during system generation when the
value conflicts with other uses of the system. For example, some graphics terminals use the GS character
as either a command or parameter value. The lead-in character function may be disabled during program
execution with the M and R functions described below. Programmers should not rely on the default value
of the lead-in character, but may obtain the current value of the lead-in character from the .GVAL request
with an offset of —4.

Note that when in high-efficiency mode (set with either the RUN/HIGH switch or the “R” program controlled

" terminal option) output character checking is disabled and the lead-in character method of selecting program
controlled terminal options is disabled; in this case, the lead-in character, function-code character, and
.argument value character are passed through to the terminal. When in high-efficiency mode, the EMT
~ method of selecting program controlled terminal options is still functional. See Chapter 4 for information .
on turnmg high-efficiency terminal mode off by means of an EMT.

Example
" PROGRAM LEADIN

Demonstrate ISX--Plus program controlled terminal options using
the "lead-in" character method.

aacaaa

BYIE LEADIN(2)
INTEGER ILEAD
EQUIVALENCE (ILEAD,LEADIN(1))
Determine and display current lead-in char
Default = 29, but don’t count on it
ILEAD = ISPY(-4) 1.GVAL with offset = -4.
TYPE 820,LEADIN(1) 1Display the current lead-in char value
C Set rubout filler character
TYPE 800,LEADIN(1),’A’,’_’
C _Now demonstrate the current rubout filler character
c Back space is the default, which we changed to underline
TYPE 810 1Ask for something to be erased
ACCEPT 830 {fait for input before exiting
STOP ’Thank you.’
800 FORNAT (1H+,A1,$)
810 FORNAT(1HO,’Enter some characters at the prompt and then °’,
1 ‘erase them with'/® DELEIE or CIRL-U.’,
1 ' They should be replaced with nndorl:lnn LA LN) ,
820 FORNAT(® The current value of the lead-in character is °,I3,’.’)
830 FORNAT (40H)
END

an

The following pa.ra.gra.phé explain the uses of each of the program controlled terminal option function-codes.
Any of these options may be selected by either the EMT method or by the lead-in character method.

3.2.1 “A” function—Set rubout filler character

When a scope type terminal is being used, the normal response of TSX-Plus to a DELETE character is to
echo backspace space backapace which repla.ces the last character typed with a space. TSX-Plus responds to
a CTRL-U character in a similar fashion, echoing a series of backspaces and spaces. Some programs that
display forms use underscores or periods to indicate the fields where the user may enter values. In this case it
is desirable for TSX-Plus to echo backspace character backspace for DELETE and CTRL-U where character
may be period or underscore as used in the form. The character to use as a rubout filler is specified by the
argument-value with the EMT method or by the third character with the lead:in character method.

20 - CHAPTER 3. PROGRAM CONTROLLED TERMINAL OPTIONS

3.2.2 “B” & “C” functions—Set VT52, VT100 and VT200 escape-letter ac-
tivation

VT52, VT100 and VT200 terminals are equipped with a set of special function keys marked with arrows
- and other symbols. When pressed, they transmit two or three character escape sequences. The “B” function
tells TSX-Plus to consider these as activation sequences. The escape character and the letter are not echoed
to the terminal, but are passed to the user program. The “C” function disables this processing and causes
escape to be treated -as a normal character (initial setting).

3.2.3 “D” function—Define new activation character

Under normal circumstances TSX-Plus only schedules a job for execution and passes it a line of input when
an activation character such as carriage return is received. The “D” function provides the user with the
. ability to define a set of activation characters in addition to carriage return. '

The new activation character is specified by the argument-value with the EMT method or by the third
character with the lead-in character method. The maximum number of activation characters that a program
may define is specified when the TSX-Plus system is generated.

Using this technique, any character may be defined as an activation character, including such characters as
letters, DELETE, CTRL-U, and CTRL-C. When a user-defined activation character is received, it is not
echoed but is placed in the user’s input buffer which is then passed to the running program.

By specifying CTRL-C as an activation character, a program may lock itself to a terminal in such a fashion
that the user may not break out of the program in an uncontrolled manner.

If carriage return is specified as a user activation character, neither it nor a following line feed will be echoed
to the terminal. TSX-Plus will also not add a line feed to the input passed to the program.

3.2.4 “E” and “F” functions—Control character echoing
The “E” and “F” functions are used to turn on and off character echoing. The “E” function turns it on, and

the “F” function turns it off. An example of a possible use is to turn off echoing while a password is being
entered.

3.2.5 “H” function—Disable subprocess use

The “H” function disables the subprocess window facility for the time-sharing line.

3.2.6 “I” and “J” functions—Control lower case input

The “I” function allows lower case characters to be passed to the running program. The “J” function causes
TSX-Plus to translate lower case letters to upper case letters. The SET TT [NO]LC keyboard command
also performs these functions.

3.2.7 “K” and “L” functions—Control character echoing

The “K”. function causes TSX-Plus to enter deferred character echo mode. The “L” function causes TSX—
Plus to enter immediate character echo mode. - Any characters in the input buffer which have not been
echoed when the “L” function is selected will be immediately echoed. See the description of the SET TT
[NOJDEFER command for an explanation of deferred echo mode.

N’

3.2. PROGRAM CONTROLLED TERMINAL OPTIONS 21

3.2.8 “M” function—Set transparency mode of output

If transparency mode is set, TSX~Plus will pass each transmitted character through to the program without

. performing any special checking or processing. Tra.nspa.rency mode allows the user’s program to send any
‘character to the terminal. Note that once transparency mode is set on, TSX-Plus will no longer recognize

the lead-in character (octal 85, which means a program control function follows). The only way to turn off
transparency mode is to exit to KMON.

3.2.9 “N” and “O” Functions—Control command file input

When a command file is being used to run programs (see the TSX-Plus User’s Reference Manual), input
which would normally come from the user’s terminal is instead drawn from the command file. Occasionally,
it is desirable to allow a program running from a command file to accept input from the user’s terminal
rather than the command file. The “N” function suspends input from the command file so that subsequent
input operations will be diverted to the terminal. The “O” function redirects input to the command file.
These functions are ignored by TSX-Plus if the program is not being run from a command file.

3.2.10 “P” function—Reset activation character

The “P” function performs the complement operation to the “D” function. The “P” function is used to
remove an activation character that was previously defined by the “D” function. The character to be
removed from the activation character list is specified by the argument-value with the EMT method or by
the third character with the lead-in character method.

Only activation characters that were previously defined by the “D” function may be removed by the “P”
function.

3.2.11 “Q” function—Set activation on field width

The “Q” function allows the user to define the width of an input field so that activation will occur if the user
types in as many characters as the field width, even if no activation character is entered. The field width
is specified by the ASCII code value of the argument-value with the EMT method or of the third character
with the lead-in character method. If an activation character is entered before the field is filled, the program
will be activated as usual. Each time activation occurs the field width is reset and must be set again for the
next field by reissuing the “Q” function. For example, the following sequence of characters could be sent to
TSX-Plus to establish a field width of 43 characters: “<lead-in>Q+”. Note that the character “+” has the
ASCII code of 053 (octal) which is 43 decimal.

3.2.12 “R” function—Turn on high-efficiency terminal mode

The “R” function causes TSX-Plus to place the line in high efficiency terminal mode. The effect is to

~disable most of the character testing overhead that is done by TSX-Plus as characters are transmitted
-and received by the line. Before entering high-efficiency mode the program must declare a user-defined

activation character that will signal the end of an input record. Once a program has entered high-efficiency
mode, characters sent to the terminal are processed with minimum system overhead. For example, tab

* characters are not expanded to spaces. Also, TSX-Plus does not check to see if the character being sent

is the TSX-Plus terminal control leadin character. This means that the lead-in character method may not
be used to control terminal options until the program exits or the EMT to turn off high efficiency mode
is used (see Chapter 4). Characters received from the terminal are passed to the program with minimum
processing: they are not echoed; and control characters such as DELETE, CTRL-U, CTRL-C, CTRL-W
and carriage-return are all treated as ordinary characters and passed directly to the program. High-efficiency
mode terminal I/O is designed to facilitate machine-to-machine communication; it is also useful for dealing
with buffered terminals that transmit a page of information at a time..

22 : CHAPTER 3. PROGRAM CONTROLLED TERMINAL OPTIONS

3.2.13 %S” function—Turn on single-character activation mode

The “S” function causes TSX-Plus to allow a program to do single-character activation by setting bit 12 in
the Job Status Word. Normally TSX-Plus stores characters received from the terminai and only activates
the program and passes the characters to it when an activation character, such as carriage-return, is received.
It does this even if bit 12 is set in the Job Status Word, which under RT-11 causes the program to be passed
characters one-by-one as they are received:from the terminal. The “S” function can be used to cause TSX~
Plus to honor bit 12 in the Job Status Word. If JSW bit 12 is set and the program is in single-character
activation mode, TSX—Plus passes characters one-by-one to the program as they are received and does not
echo the characters to the terminal. The /SINGLECHAR switch for the R[UN] command and the SET TT
SINGLE command can also be used to cause TSX~Plus to honor JSW bit 12. Since the high-efficiency mode
implies certain terminal characteristics (such as buffered input and no echo), it is not possible to override
these inherent modes by using other function codes.

3.2.14 “T” function—Turn off single-character activation mode

The “T” function is the complement of the “S” function. It turns off single-character activation mode.

3.2.15 “U” function—Enable non-wait TT I/O testing

The “U” function causes TSX-Plus to allow a program to do a .TTINR EMT that will return with the carry
bit set.if no terminal input is pending or a .TTOUTR EMT that will return with the carry bit set if the
terminal output buffer is full. Normally TSX-Plus suspends the execution of a program if it attempts to
obtain a terminal character by doing a .TTINR EMT and no input characters are available. Or if it does a
“ . TTYOUT or .TTOUTR EMT and there is no free space in the terminal output buffer. It does this even
if bit 8 of the Job Status Word is set, which under RT-11 would enable non-blocking .TTINRs. This is
done to prevent programs from burning up CPU time by constantly looping back to see if terminal input is
available. The “U” function causes TSX~Plus to honor bit 8 in the Job Status Word and allows a program
to do a .TTINR to check for pending TT input or a . TTOUTR EMT to check for space in the output buffer
without blocking if none is available. The SET TT NOWAIT command and the /SINGLECHAR switch for
the R[UN] command also perform this function. Because the single character terminal option determines
several terminal operating modes (such as no echo and transparent input), it is incompatible with other
terminal functions which would conflict with the implied single-character operation. See the description of
special terminal mode in the RT-11 Programmer’s Reference Manual.

3.2.16 “V” function—Set field width limit

The “V” function is used to set a limit on the number of characters that can be entered in the next terminal
input field. Once the “V” function is used to set a field limit, if the user types in more characters to the
field than the specified limit, the excess characters are discarded and the bell is rung rather than echoing the.
characters. An activation character still must be entered to complete the input. The field width is specified
by the ASCII code value of the argument-value with the EMT method or of the third character with the
lead-in character method. The field size limit is automatically reset after each field is accepted and must be
re-specified for each field to which a limit is to be applied. Note the difference between the “Q” and “V”
functions. The “Q” function sets a field size which causes automatic activation when the field is filled; the
“V” function sets a field size which causes characters to be discarded if they exceed the field size. Note that
any field width limit is ignored for command file input.

3.2.17 “W?” and “X” functions—Control tape mode

"The “W” function turns on tape mode and the “X” function turns it off. Turning on tape mode causes the
system to ignore line-feed characters received from the terminal or external device. The SET TT [NO|]TAPE
keyboard command may also be used to control tape mode.

R

3.2. PROGRAM CONTROLLED TERMINAL OPTIONS 23

3.2.18 “Y” and “Z” functions—Control line-feed echo

The “Y” function is used to disable the echoing of a line-feed character when a carriage-return 1is received.
Normally, when TSX-Plus receives a carriage-return character, it echoes carriage-return and line-feed char-
acters to the terminal and passes carriage-return and line-feed characters to the program. The “Y” function
alters this behavior so that it only echoes carriage-return but still passes both carriage-return and line-feed
to the program. This function can be used to advantage with programs that do cursor positioning and which
do not want line-feed echoed because it might cause the screen display to scroll up a line. The “Z” function
restores the line-feed echoing to its normal mode.

24

CHAPTER 3. PROGRAM CONTROLLED TERMINAL OPTIONS

e

Chapter 4

TSX—Plus EMTs

TSX-Plus provides several system service calls (EMTs) in addition to those compatible with RT-11. In
" order to take advantage of the special features of TSX-Plus, programs written to run under both TSX-Plus
and RT-11 should check to see if they are under TSX-Plus. This chapter describes the preferred method of
checking and goes on to describe several of the special EMTs provided by TSX-Plus. EMTs which relate
* specifically to features described elsewhere in this manual are included in the appropriate chapters.

4.1 Obtéining TSX-Plus system values (.GVAL)

The .GVAL EMT that is normally used to obtain RT-11 system values can also be used to obtain TSX-Plus
system values. Although a simulated RMON is normally mapped into each job so that it may directly access
fixed offsets into RMON, the .GVAL function is the preferred method for obtaining system values. Under
TSX-Plus, the simulated RMON need not be mapped into a job’s virtual address space (see Chapter 2).
The .GVAL EMT will still function correctly even if RMON is not mapped into the job. In addition to the
positive offset values which are documented for use with RT-11, the following negative offset values may be
used to obtain TSX-Plus system values:

Offset | Value
-2. | Job number
—4. | Lead-in character used for terminal control options
-8. | 1 if job has SYSPRY privilege; O if job does not have SYSPRV

-8. | 1if PAR 7 mapped to I/O page; 0 otherwise
-10. | Project number job is logged on under
-12. | Programmer number job is logged on under
-14. | TSX-Plus incremental license number
—16. | Current job priority
-18. | Maximum allowed job priority
—20. | Number of blocks per job in SY:TSXUCL.TSX
—22. | Job number of primary process (0 if primary process, always 0 for detached jobs)

—24. | Name of system device (RAD50) (device on which RT-11 was booted when TSX~
Plus was started; may not correspond to current SY assignment)

—26. | Maximum fixed-low-priority value

—28. | Minimum fixed-high-priority value

—80. | Job number of parent process (0 if primary process, same as offset —22. if subpro-
cess)

—32. | System version number—Decimal value times 100.

-34. | Relative subprocess number (0 if primary process or detached job)

25

26

As with the standard .GVAL function, the system values are returned in RO.

Example

.TITLE
.ENABL

TSGVAL
LC

CHAPTER 4.

;Demonstrate usage of .GVAL with both positive (RT-11)
(18X-Plus) offsets
.GVAL, .PRINT, .EXIT .

; and negative
.NCALL
.GLOBL
.GLOBL

SYSGEN = 372

START: .GVAL
IS8T
BPL
PRINT
.GVAL
CALL
PRINT
.GVAL
CALL
.PRINT
.GVAL
CALL

9§: .EXIT

.NLIST
LICENS: .ASCII
SYSTEN: .ASCII
JOBNUN: .ASCII
VIRI: .ASCII

.END

4.2 Determining number of free blocks in spool file

PRIDEC
PRIRGO

#AREA , #SYSGEN
) 1)

9¢

#LICENS
#AREA, #-14.
PRIDEC
#SYSTEN
#AREA,#-24.
PRIR50

#JOBNUN -

#AREA,#-2
PRIDEC
#AREA,#-22.

. RO

']
#VIRT

2
BEX

;Subroutine to print a word in decimal
;Subroutine to print a RADEO word
;RNON offset to sysgen options word
;Exanine system options word

;See if we are running ISX-Plus
;Exit if not

s"License # is"

;0btain last 4 digits of license #
;And display it

;"Started from"

;Get system device

;And display it

“i"Job # is"

;Get ISX-Plus job number
;Display the job number

;See if this is the primary line
;0 if primary

;Done if so

;Else say subprocess

;2 word ENT arg area

/15X-Plue license number /<200>
<16><12>/15X-Plus started from /<200>
/:/<16><12>/1SX-Plus line number /<200>
/ (This is a subprocess)/<200>

START

TSX-PLUS EMTS

et

The following EMT will return in RO the number of free blocks in the spool file. The form of the EMT is:

ENT

375

with RO pointing to the following argument area:

.BYTE

Example

.TITLE
.ENABL

0,107

SPLFRE
LC

;Demonstrate ENT to determine number of free spool blocks

.NMCALL
.GLOBL
START: .PRINT
NOV
ENT

CALL

SPLFRE: .BYIE

BLOKS: .ASCIZ
.EVEN
.END

.PRINT, .EXIT
PRIDEC
#NUNFRE
#SPLFRE,RO
376

PRIDEC
#BLOKS

BEX
0,107

;Preface number message

;Point to ENT arg block to

;Determine number of free spool blocks
;Number is returned in RO

;Display the number

;End of message

;ENT arg to get # free spool blocks

/The spool file has /<200>

/ free blocks./

START

g

4.3. DETERMINING IF A JOB IS RUNNING UNDER TSX-PLUS 27
4.3 Determining if a job is running under TSX-Plus

In cooperation with Digital Equipment Corporation, a bit has been allocated in the RT-11 sysgen options
word at fixed offset 372 into the RMON. The high order bit (bit 15; mask 100000) of this word will be set (1)
if the current monitor is TSX-Plus version 5.0 or later. This bit will be clear if the monitor is any version
of RT-11. Testing this bit is the preferred method of determining if a job is running under TSX-Plus.
However, if a program is expected to also be used under older versions of TSX-Plus, then an alternative
method is necessary. For older versions of TSX-Plus, first issue the .SERR request to trap invalid EMT
requests and then issue the TSX-Plus EMT to determine the time-sharing line number. If the job is running
under RT-11, this EMT will be invalid and the carry bit (indicating an error) will be set on return. If the
job is running under TSX-Plus, then the EMT will return without error and the line number will be in RO.

Example

.TITLE TISXENV

.ENABL LC
; Demonstrate preferred method of determining whether job is
; running under ISX-Plus or RI-11

.NCALL .PRINT, .EXIT,.SERR, .HERR :

Jsy = 44 ;Job Status Word address

RNON = b4 ;Pointer to base of RNON

SYSGEN = 372 ;Index into RNON for sysgen features
START: .PRINT #UNDER ;"Running under"

; This is the preferred method, but will not work prior to
; ISX-Plus version 5.0

Nov RMON,R1 sPoint to base of RNON
ST SYSGEN(R1) ;See if running under ISX-Plus
BPL RT11 ;Branch if running under RI-11

; This is the old method, but will work correctly with
; all versions of ISX-Plus

H .SERR ;Trap invalid ENT error
H NOV #ISXLN,RO ' ;Point to ENT arg block to
H ENT 376 sDetermine ISX-Plus line number
: BCS RT1L ;Branch if running under RI-11
.PRINT #ISXPLS ;"ISX-Plus”
.EXIT
RTi1: .HERR ;Reset SERR trap
.PRINT #NOIPLS s"RI-11"
.EXIT
TSXLN: .BYIE 0,110 ;ENT arg block to get line number
.NLIST BEX

UNDER: .ASCII /Nonitor is /<200>
ISXPLS: .ASCIZ /ISX-Plus./
NOTPLS: .ASCIZ /RI-11./

.END START

4.4 Determining the TSX—Plus line number

The following EMT will return in RO the number of the line to which the job is attached. Physical lines are |
numbered consecutively starting at 1 in the same order as specified when TSX-Plus is generated. Detached
job lines occur next and subprocesses are numbered last.

The form of the EMT is:
ENT 376
with RO pointing to the following argument area:

.BYTE 0,110

28 CHAPTER 4. TSX-PLUS EMTS

Example

.TITLE LNIT
.ENABL LC
; Yhat ISX line number is this terminal attached to?
; And vhat type terminal does TSX-Plus think it is?
.NCALL .PRINT,.EXIT,.TTIYOUT,.SERR,.HERR -

.GLOBL PRTIDEC ;Subroutine to print a word in decimal
;Are we under ISX-Plus?
START: .SERR ;Stop error aborts
) NOV #ISXLN,RO ;Set up ENT request to
ENT 376 ;Get ISX-Plus line number
BCS NOTISX ;If error, not under ISX-Plus
NOV RO,LINE ;Save it
.HERR ;Enable error aborts
.PRINT #LINNSG ;Display line number message
NOY LINE,RO ;Recall line number
CALL PRIDEC ;Display line number
.PRINT #IRNNSG ;Display term type message
NOY #IIYPE,RO ;Set up ENI request to
ENT 376 ;Get terminal type from ISX-Plus
;Returns into RO
ASL RO ;Convert to word offset
PRINT TYPE(RO) ;Print type from index into table
EXIT ;A11 done
NOTISX: .PRINT #ISXERR ;Say we are not under ISX-Plus
.EXIT
LINE: JMORD O ;Storage for ISX line number
TERN: .NORD O ;Storage for ISX tera type code
ISXLN: .BYIE 0,110 ;ISX line number ENI parameters
TIYPE: .BYIE 0,137 ;ISX term type ENT parameters
; Table of pointers to ISX term type names
.EVEN

TYPE: .¥WORD UNK,VI52,VI100,HAZEL,ADN3A,LA36,LA120
.WORF DIABLO,QUNE,VI200
.NLIST BEX
LINNSG: .ASCII /ISX-Plus line number: /<200>
TRNNSG: .ASCII <15><12>/Terminal type: /<200>
TSXERR: .ASCIZ /TLNTI-F-Not running under ISX-Plus/
UNK: .ASCIZ /Unknown/
VI52: .ASCIZ /VI62/
¥T100: .ASCIZ /VI100/
HAZEL: .ASCIZ /Hazeltine/
ADN3A: .ASCIZ /ADNSA/
LA36: .ASCIZ /LA38/
LA120: .ASCIZ /LA120/

DIABLO: .ASCIZ /Diablo/ ;Diablo and Qume are equivalent
QUNE: .ASCIZ /Qume/ ;Diablo and Qume are equivalent
VI200: .ASCIZ /vVT200/

.EVEN

.END START

4.5 Determining subprocess job number

The following EMT may be used to determine the line number on which subprocesses are executing. This
is useful in conjunction with the EMT to initiate a subprocess. ‘

The form of the EMT used to determine a subprocess job number is:
ENT 3756

with RO pointing to an argument block of the following form:

v

4.6. SET/RESET ODT ACTIVATION MODE 29

.BYTE 1,110 .
.WORD relative-subprocess-number

The relative subprocess number is in the range 1 — MAXSEC, and is the same as the number used when
switching to a subprocess from the keyboard with the <*W><n> sequence. In absence of an error, this EMT
returns in RO the line number on which the subprocess is running. This EMT can return the following error
codes: S ' : -

4.6 Set/Reset ODT activation mode

The following EMT can be used to set TSX-Plus to activate on characters that are appropriate to ODT.
In this mode TSX—-Plus considers all characters to be activation characters except digits, “,”, “$”, and “”.
" The form of the EMT is: ' '
ENT 376
with RO pointing to the following argument area:
.BYTE code,111
where code=1 to turn on ODT activation mode, and code=0 to reset to normal mode.
Example

.IITLE ACIODI
.ENABL LC

;Demonstrate ENT which sets ODT activation mode
.NCALL .PRINT, .EXIT

START: .PRINT '#ODITYP ;Say we are entering ODT activation mode
NOY #ACIODT,RO ;Point to ENT arg block to
ENT 376 ;Set ODT activation mode
18: CALL GEILIN ;Get some terminal input
CNPB BUFFER,#°Q ;Back to regular mode?
BNE 1 ;No, get more lines
PRINT #REGIYP ;Say we are going back to regular activation
CLRB ACTODT ;Make arg block into RESET mode request
MOY ~ #ACIODI,RO ;Point to ENI arg block to
ENT 376 ;Reset ODT activation mode
. 28: CALL GETLIN ;Get more input
CNPB BUFFER,#°'Q ;¥ant to quit?
BNE 2¢ ;No, repeat
.EXIT
GETLIN: .PRINT #PRONPT ;Request some input
NOV #ITIBLK,RO ;Point to ENI arg block to
ENT 376 ;Accept a block of characters
CLRB BUFFER(R0) ;Make input string ASCIZ
.PRINT #BUFFER ;And echo same string back
RETURN
ACTODTI: .BYIE 1,111 ;ENT arg block to SEI/RESET ODT act’n mode
TTIBLK: .BYIE 0,116 ;ENT arg block to get block input from term
-JMORD . BUFFER ;Pointer to input buffer - .
JWORD 79. . B ;Number of input chars requested
. .NLIST BEX)
ODTTYP: .ASCIZ /Starting ODI activation mode./

oo oo

REGIYP: .ASCIZ /Restoring regular activation mode./
PRONPT: .ASCII /1/<200> -
BUFFER: .BLKB 79. ;TTIBLK input buffer
.BYIE [\] ;CLRB could go here on full buffer

.END START

30 CHAPTER 4. TSX-PLUS EMTS

4.7 Sending a block of characters to the terminal

The following EMT can be used to efficiently send a block of characters to the terminal. The form of the
EMT is:

ENT ‘376
with RO pointing to the following argument block:

.BYTE 0,114
.WORD buffer
.WORD count

where buffer is the address of the buffer containing the characters to be sent and count is a count of the
.number of characters to be sent. This EMT"is much more efficient to use than a series of TTYOUT EMTs—
it has the same efficiency as a .PRINT EMT but it uses a count of the number of characters to send rather
than having the character string in ASCIZ form.

Example

.TITLE TITOBLK

.ENABL LC
;Demonstration of the use of the ISX-Plus ENT to send a block of
scharacters to the terminal.

.NCALL .EXIT

START: NOV #TT0BLK,RO ;Point to ENT arg block to
ENT 376 ;Send a block of chars to the terminal
.EXIT

TIOBLX: .BYIE 0,114 ;ENT arg block to send a block of chars
.WORD BUFFER ;Pointer to character buffer
.WORD . <BUFEND-BUFFER> ;Count of characters to be output
.NLIST BEX

BUFFER: .ASCII /This ENT is used to send a block of characters /
.ASCII /to the terminal./<ib><12>
.ASCII /It is similar to .PRINT, except that it uses /
.ASCII /a count of characters/<ib><12>
.ASCII /rather than a special terminating character /
.ASCII /(<0> or <200>)./<15><12>

.END START

4.8 Accepting a block of characters from the terminal

The following EMT can be used to accept all characters. from the terminal input buffer up to and including
the last activation character entered. The form of the EMT is:

ENT 376

with RO pointing to the following argument block:

.BYTE 0,115
.WORD buffer
.WORD size

-where buffer is the address of the buffer where the characters are to be stored and stze is the size of the
buffer (number of bytes). This EMT causes a program to wait until an activation character is entered and
then returns all characters received up to and including the last activation character. On return RO contains
a count of the number of characters received. If the specified buffer overflows, the carry flag is set on return.
This EMT is substantially more efficient than doing a series of .TTYIN EMTs; it is particularly well suited
for accepting input from page buffered terminals.

Example

e

4.9. CHECKING FOR TERMINAL INPUT ERRORS 31

JIITLE TTIBLK

.ENABL LC
;Demonstrates the use of ISX-Plus ENT to accept a block o:t characters
;from a terminal.

.NCALL .EXIT,.PRINT,.TIYIN

START: .PRINT #PRONPT ;Request input
NOV #TTIBLK,RO +Point to ENT arg block to
ENT 376 sAccept a block of chars from the terminal
NOY R0,R1 ;Save input character count
;Char count includes activation char (and LF after CR)
BCC 1 ;Buffer overflow on input?
.PRINT #OVFLOY ;Yes, warn user
1$: ADD #BUFFER,R1 ;Point past last char in buffer
- CLRB (1) ;Make the input ASCIZ
.PRINT #BUFFER ;Reproduce the input..
- JEXIT : . R .
ITIBLK: .BYIE 0,116 - ;ENT arg block to accept block from terminal
.WORD BUFFER ;Start of input buffer

.WORD <BUFEND-BUFFER> ;Length of buffer in chars (May not exceed
;input buffer size declared in TSGEN.)

: .NLIST BEX : -

PROMPT: .ASCIZ /70 character input buffer ready./

OVFLOY: .ASCIZ /1ITIBLK-F-Buffer overflow/

BUFFER: .ASCII - /XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/ . ;35 chars

LASCIT /XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/ ;36 chars

JAscix /11 ;ITIBLK will never write over these

.END START

amy

o

4.9 Checking for terminal input errors

The following EMT can be used to determine if any terminal input errors have occurred. The form of the
EMT is: : :

ENT = 375
with RO pointing to the following érgument block:

.BYTE 0,116

On return from the EMT, the carry flag is set if an input error has occurred since the line logged on or since
the last time a check was made for input errors. The two types of errors that are monitored by this EMT
are hardware reported errors (parity, silo overflow, etc.) and characters lost due to TSX-Plus input buffer
overflow.

Example

.TITLE CKITIE
.ENABL LC

;Check for terminal input errors
.NCALL .PRINT,.TIYIN,.EXIT

STARY: .PRINT #PRONPT ;Ask to overflow buffer
" MOV~ #100.,R1" ;Set .up counter for input loop’
T MOV - #SETTIO,RO. ° ;Point to. ENT arg block to - .
. ENT 376 . ;Set terminal time out for 0.5 secs

,Hoto that this is reset after every activation character!!!

;Start requesting characters. Input characters are stacked in the user
;input buffer until an activation character is seen (\eg carriage return).
;80, all we have to do to overflow is enter more than the input buffer
;size (defined in TSGEN either by DINSPC or with the BUFSIZ macro)

;and type in too many before activating.

;Use a time out sc we do not have to hit return.

32 . CHAPTER 4.
1$: JITYIN ;Cet a character from the terminal

CNPB RO, #37 ;¥as it time-out activation char?

BEQ TINOUT ;Yes, exit loop

808 R1,1$;Repeat for 100. characters

;For a system with input buffer size=100. in ISGEN, we should be
;able to overflow the buffer before ve see an activation char

TINOUT: MOV #CKTTIE,RO ;Point to ENI arg block to
ENT 376 - ;Check for terminal input errors
BCS HADERR ;Say we had errors
.PRINT #NOERR ;Say we had no errors
.EXIT
HADERR: .PRINT #YESERR ;Error message
CNP R1,#3 ;Did we i1l the buffer?

;Note that last two chars of input buffer are reserved
;for activation chars. Any excess input is discarded.

BLE TOONNY ;Yes, buffer overflow
.PRINT #HDVERR ;No, hardvare error message
EXIT
TOONNY: .PRINT #OVFERR ;Buffer overflow message
EXIT
SETTTIO: .BYIE 0,117 ;ENT arg block to set terminal time out
.¥0RD- 20. ;to 10 seconds (20 half sec units)
.H0RD 37 ;Passed as activation char on time-out
CKITIE: .BYIE 0,116 ;ENT arg block to check for input errors
.NLIST BEX

YESERR: .ASCIZ <16><12>/There were errors during terminal input./<7>

OVFERR: .ASCIZ /(Probably input buffer overflow.)/

HDYERR: .ASCIZ /(Probably hardware error ... parity, stop bits, data bits)/

NOERR: .ASCIZ <16><12>/There were no terminal input errors./

PROMPT: .ASCIZ /Please enter more than 100 input characters and wait. . ./
.END START

TSX-PLUS EMTS

4.10 Determining input characters pending for a line

This EMT can be used to determine the number of input characters pending for the current line. The

number of input characters pending is returned in RO.
The form of the EMT is:

ENT 3756
with RO pointint to the followihg EMT argument block:

.BYTE 1,116

4.11 Set terminal read time-out value

This EMT can be used to specify a time-out value that is to be applied to the next terminal input operation.
This EMT allows you to specify the maximum time that will be allowed to pass between the time that you
" issue-a command to get input from the terminal and the time that an activation character is received to
terminate the input field. You also specify with this EMT a special activation character that is returned
- as the terminating character for the field if the input operation times out without receiving an activation

character from the terminal. The form of the EMT is:
ENT 376

with RO pointing to the following argument block:

g

4.12. TURNING HIGH-EFFICIENCY TERMINAL MODE ON AND OFF 33

.BYTE 0,117
.WORD time-value
.WORD activation-character

where time-value is the time-out value specified in 0.5 second units and activation-character is a single
character value that is.to be returned as the last character of the field if a time-out occurs. The time value
specified with this EMT only applies to the next terminal input field. The time value is reset when the next
field is received from the terminal or the time-out occurs. A new time-out value must be specified for each
input field that is to be time controlled.

Example

.IITLE DUNJUN }
; Demonstrate use of terminal input time-out testing
~ .NMCALL .TTYOUT,.TIYIN,.EXIT,.PRINT
START: .TIYOUT #*°?

1$: MOV #SETIIO,RO0 ;Point to ENT arg block to
. ENT 376 ;Set terminal input time-out
.TIYIN © ;Get a character from the terminal
CNP RO, #<15> ;Skip over carriage returns
BEQ 14
CNP RO, #<12> s;and line feeds
BEQ STARI ;prompt for next char
CNP 20,#°Q ;Should we quit?
BNE 1s) ;No, get next char
.PRINT #DONE ;Quit or time-out
EXIT iBye :

SETITO0: .BYTE 0,117 ;ENT arg block

) .WORD 6260.32 ;6.min * 60.sec/min * 2.half-sec-units/sec

.WORD 'Q sActivation character on time-out
.NLIST BEX

DONE: .ASCIZ /STOP - /
.END START

See also the example program CKTTIE in the section on checking for terminal input errors.

4.12 Turning high-efficiency terminal mode on and off

- TSX-Plus offers a high-efficiency mode of terminal operation that eliminates a substantial amount of system
overhead. for terminal character processing by reducing the amount of processing that is done on each
character. When in high-efficiency mode, characters are sent directly to the terminal with minimum handling
by TSX-Plus; operations such as expanding tabs to spaces and form-feeds to line-feeds are omitted as well
as input processing such as echoing characters and recognizing control characters such as DELETE, CTRL-
U and CTRL-C: The only characters treated specially on input are user-defined activation characters and
the user-specified break character. At least one user specified activation character must be declared if
high-efficiency mode is to be used. This form of terminal I/O is designed to facilitate high-speed machine-
to-machine communication. It can also be used effectively to communicate with buffered mode terminals.
The form of the EMT used to control high-efficiency mode is:

ENT 376
with RO pointing to the following argument block:
.BYTE code,120

where code is 1 to turn high-efficiency mode on and 0 to turn it off.

Example

34 : , CHAPTER 4. TSX-PLUS EMTS

.TITLE HIEFF
.ENABL LC

;Demonstrate the use of ISX-Plus Hi-efficiency terminal mode
.MCALL .EXIT,.PRINT

START: .PRINT #DCLCC ;Make “C an activation char

.PRINT. #PRONPT ;Ask for input

"NOV.. #HIEFF,R0 ;Point to ENT arg block to

.ENT- = 376 . ;Turn on hi-efficiency mode

Nov #TTIBLK,RO ;Point to ENT arg block to

ENT 375 sAccept a block of characters

;Actual character count returned in RO

HERSN Do something useful with the input?

NOVB #15,<BUFFER-1>(R0O) ;Replace the activation char with
MNOVB #12,BUFFER(RO) ;Carriage return, line feed

INC RO ;Count LF for output
NOY RO,<ITOBLK+4> ;Set up count for output
NOV #ITOBLK,RO ;Point to ENT arg block to
ENT - 876 ;Display a block of characters
CLRB HIEFF ;Get ready to turn hi-eff off
NOV #HIEFF,RO ;Point to ENT arg block te
ENT 376 ;Turn off hi-efficiency mode
.EXIT >
HIEFF: .BYTE 1,120 sENT arg block to turn hi-eff mode on (off)
TIIBLK: .BYIE 0,115 ;ENT arg block to accept a block of chars
.YORD BUFFER ;Pointer to input buffer
.WORD BUFSI1Z ;Number of chars to input
ITOBLK: .BYIE 0,114 ;ENT arg block to display a block of char
.WORD BUFFER ;Pointer to buffer for output :
.WORD BUFSIZ ;Size of buffer to output
BUFFER: .BLKB 82. ;1/0 buffer---Cannot exceed line’s I/0
BUFSIZ = . - BUFFER H buffer sizes declared in ISGEN
.MORD O ;Spacer in case of buffer overfill
.NLIST BEX

DCLCC: .ASCII <35><’D><3><200> ;Declare “C as special activation char
PROMPT: .ASCII /Please enter 1 line of characters (“C ends)./<15><12>
LASCIZ /No special processing or echoing will be done./
.END START

4.13 Checking for activation characters

The following EMT can be used to determine if any activation characters have been received by the line but
not yet accepted by the program. The form of the EMT is: ‘

ENT 375
with RO pointing to the following argument block:
.BYTE - 0,123

If there are pending activation characters, the carry flag is cleared on return from the EMT; if there are no
pending activation characters, the carry flag is set on return from the EMT.

Example
.TITLE CKACT
.ENABL LC
;Demonstrate use of check for activation characters
LEADIN = 36 ;ISX-Plus program controlled terminal

;option lead-in character
.NCALL .PRINT,.EXIT,.GILIN,.IVWAIT,.TIYOUT
START: .PRINT #PRONPT ;Request some characters:

~

4.14. SENDING A MESSAGE TO ANOTHER LINE

;Do some processing.

NOV
18 .TIYOTT
DEC
BNE
.ITYOUT
.ITYOUT
NOV
2¢: .IVWAIT
HEE S
. NOV
ENT
BCS
.GTLIN
CNP
BNE
.PRINT
.EXIT
AREA: .BLXY
TIME: .WORD
CKACT: .BYIE
BUFFER: .BLXB
.NLIST
.EVEN
EX: .ASCII
PRONPT: .ASCII
.ASCIZ
BYE: .ASCIZ

4.14 Sending a message to another line

#80.,R1 ;Line length counter
. ;Tick, tock
R1 ;End of line?
2% ;No, go on
#<16> ;New line
#<12>
#80.,R1 ;Reset line length counter
#AREA,#TINE ;¥Yait 1 second here
Processing . . .
#CKACT RO ;Point to ENT arg block to
376 ;Check for pending activation characters
1$;Continue if input not complete
#BUFFER ;Collect the pending input
Do something with it
BUFFER,EX ;Exit command?
18 ;No, continue processing
#BYE :
10. ;ENT arg block
0,1.%60. ;1.sec * 60.tics/sec
0,123 ;ENT arg block for activation char check
81. ;Local input buffer
BEX
/EX/
<LEADIN>/L/ ;Disallow deferred echoing
/Please enter up to 80 characters, them RETURN:/
/Thank you./
START

;And disallow deferred echoing

Simulated here by .IWAIT

35

The following EMT can be used to cause a message to display on another line’s terminal. (This feature is
not related to message communication channels, but is the same as the keyboard SEND command.) The
form of the EMT is: '

ENT

376

with RO pointing to the following argument block:

.BYTE sub-function,127
line-number
message-address

.WORD
.WORD

where line-number is the number of the line to which the message is to be sent and message-address is the
address of the start of the message text that must be in ASCIZ form. The message length must be less
than 88 bytes. Note that if the target screen is only 80 characters wide, characters past column 80 will be
overwritten. If sub-function bit O is set and the job issuing this EMT has OPER privilege, then the GAG
setting of the destination terminal can be overridden. If sub-function bit 1 is clear, this EMT waits for a
free message buffer if none is available. If bit 1 is set and no free message buffer is available, then the EMT
returns immediately with error code 2. Use of this EMT requires SEND privilege. Note that information
sent to a line with this EMT is not processed by the window manager for the target line. Thus, if the window
is refreshed the message sent will disappear.

Error

Code | Meaning
0 | Job does not have SEND privilege.
1 | Line has SET TT GAG and is executing a program.
2| No free message buffers are available.

36 CHAPTER 4. TSX-PLUS EMTS

Example
See the example program CKSTAT in the section on determining job status information.

, N

4.15 Starting A Detached Job

This EMT can be used to start the execution of a detached job. Use of this EMT requires DETACH privilege.
The process which issues this EMT is known as the parent of the detached job it starts. The form of the

EMT is:
ENT 376
with RO pointing to the following argument block:

.BYTE 0,132
.WMORD name-address

where name-address is the address of an area containing the name of the command file to be started as a
detached job. The command file name must be stored in ASCIZ form and may contain an extension. If a free
detached job line is available, the specified command file is initiated as a detached job and the number of the
detached job line is returned in RO. A detached job started by use of this EMT inherits the characteristics
of the (sub)process that is executing the EMT. If there are no free detached job lines, the carry bit will be
set on return.

Example

.TITLE SIRIDJ
.ENABL LC :
;Start a job on a ISX--Plus detached line
CR = 16
LF = 12
ERRBYT = B2
.MCALL .ENTIER,.WRIT¥,.CLOSE, .PRINT, .EXIT
START: CLR 21 ;Channel number
;No .FEICH is necessary under TSX--Plus, handlers are alvays resident.
1$: .ENTER #AREA,R1,#FILRGO,#1 ;Open a one block file on first free channel.

BCC 2¢ ;Branch on successful .ENIER
I8IB Q#ERRBYT ;¥hy didn’t .ENTER work?
BNE NOROON ;Error = 1 :not enough room for file
INC) 5§ ;Try next higher channel
CNP R1,#17 ;Last channel? .CDFN not supported by
;ISX~--Plus, so legal channels are 0-15.
BLE 1 ;0K, retry on next channel
.PRINT #NCA ;Ran out of channels
BR DONE '
2¢: .WRITY #AREA,R1,¥CONNDS,#<<CMDEND-CONNDS+1>/2>,#0
BCS WRTERR ;Bad write?
.CLOSE 11 ;Close the file)
NOV #SIRIDJ,RO ;Point to ENT arguments to
ENT 376 ;Start the detached job
BCS DICHER ;Bad start of detached job?
BR DONE
NOROON: .PRINT #NER ;Not enough room error
BR DONE s
WRTERR: .PRINT #BADYRT < 3 MRITH error
.CLOSE R1
BR DONE
DICHER: .PRINT #BADDET ;SIRTDJ error
DONE: .EXIT

AREA: .BLX¥ b ;ENT Argument area

4.16. CHECKING THE STATUS OF A DETACHED JOB 37

STRIDJ: .BYTE 0,132
.WORD FILNAN

. .NLIST BEX

FILRGO: .EAD50 /ST CISTAICOM/

FILNAN: .ASCIZ /SY:CKSTAT.CON/

;ENT arguments to start a detached job
;Pointer to name of command file

;2AD50 nama of command file to be detacked
sASCII name of command file to be detached

- COMNDS: .ASCIZ /R CKSTAT/<16><12> ;Start a monitoring program

CNDEND : .
NER: .ASCIZ /ISTRIDJ-F-Not enough room for command file./<7>
NCA: . .ASCIZ /TSIRIDJ-F-No channels available for command file./<7>
BADWRT: .ASCIZ /YSIRTIDJ-F-Error writing command file./<7>
BADDET: .ASCIZ /YSTRIDJ-F-Error starting detached job./<7>
.END START

4.16 Checking the status of a detached job

This EMT may be used to check the status of a detached job. The form of the EMT is:

ENT

375

with RO pointing to the following argument block:

.BYTE
.WORD

where job-number is the number of the detached job to be checked. If the detached job is still active the
EMT returns with the carry-flag cleared. If the detached job has terminated and the detached job line is

1,132

job-number

free, the EMT returns with the carry-flag set.

Example
.TITLE CKABDJ
.ENABL LC
; Check status of a detached job and abort it if running
.MCALL . - .EXIT, .PRINT
STARI: NOV #STAIDJ,RO ;Point to ENI arg block to
ENT 376 ;Check status of a detached job
BCC 18 ;I2 still on, kill it
.PRINT #NOION ;Else, say it isn’t active
-EXIT
1$: NOV #ABRIDJ,RO ;Point to ENT arg block to
ENT 376 ;Abort detached job
BCS ABERR ;Since we checked, should never err
.PRINT #KILLED ;Say we killed it
.EXIT
ABERR: .PRINT #ABERNS
.EXIT
STAIDJ: .BYIE 1,132 ;ENT arg value to check detached job status
.NORD 9. ;Line number of detached job to be checked
ABRIDJ: .BYIE 2,132 ;ENT arg value to abort a detached job
.NORD 9. ;Line number of detached job to be killed
.NLIST BEX)) :
ABERNS: .ASCIZ /TCKABDJ-F-Invalid detached job number/<7>
NOTON: .ASCIZ /ICKABDJ-I-No detached job on line #9/<7>
KILLED: .ASCIZ /Detached job on line #9 killed./

START

38 CHAPTER 4. TSX-PLUS EMTS

4.17 Killing a job

This EMT may be used te kill any job if the appropriate privileges are present. If it is used to kill a detached
job, then DETACH privilege is required; to kill primary and secondary lines, DETACH privilege is not
required. The expected checking is always done for SAME, GROUP, and WORLD privileges. That is: a
process may always kill its parent or child, may only kill a different line with the same PPN if it has SAME
privilege, may only kill a process with the same project but different programmer number if it has GROUP
privilege, and may only kill another job with a different project number if it has WORLD privilege.

This EMT is equivalent to the keyboard KILL command and checks for DETACH privilege when appropriate.
The form of this EMT is:

ENT 376
with RO pointing to an argument block like:

.BYTE 2,132
.WORD job_number

This EMT may return the following error codes:

Error
Code | Meaning

0 | Invalid subfunction code
1 | Invalid job number

2 | You do not have privilege to kill that job

4.18 Establishing break sentinel control

The following EMT can b; used to declare a completion routine that will be triggered when the BREAK
key is pressed. (Note that receipt of the break sentinel character while the terminal is already in terminal
input state does not activate entry to the completion routine.) The form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,133
.WORD brkchr
.WORD cplrtn

where brkchr is a user defined character that is to be declared the BREAK character and cplrin is the address
of the completion routine that is to be called when the break character is received from the terminal.

The specified completion routine will be called if the user presses either the key labeled “BREAK” (which
transmits a long space) or types the character that is declared as the user-specified break character (brkchr).
If no user-specified break character is wanted, specify the value zero (0) for brkchr in the argument block
and only the real BREAK key will be activated. Note that on some systems the console terminal BREAK
key causes entry to the hardware ODT module and for this reason cannot be used with this TSX-Plus
function. Only one break routine may be specified at a time for each user. If a break routine was previously
specified, it is cancelled when a new routine is declared. If an address of zero (0) is specified as the address
of the completion routine (¢plrin), any previously specified break routine is cancelled and the break key

e

4.18. ESTABLISHING BREAK SENTINEL CONTROL 39

connection is cancelled. On return from the EMT, RO contains the address of any completion routine
previously connected to the break sentinel character. If none was previously connected, then RO will contain
zero.

The specified break completion routine request only remains in effect for one break character. If you wish to

be notified about additional break characters, you must reestablish the break connection each time a break
character is received. This can be done from within the break completion routine. :

" A break routine can be used to signal an asynchronous request for service to a running program. A good
example of this use would be to trigger entry to an interactive debugging program.

Example

.TITLE BRESNT
;Demo use of break sentinel control
.NCALL .PRINT,.IWAIT,.EXIT

.ENABL LC
START: MOV #BRKSNT RO ;Point to argument area to
ENT 376 ;Establish break sentinel control
LPRINT #NESSAG ;Prompt for key
.TUAIT #AREA,#TINE ;Give the user 2 seconds to hit the break key
IS8T YES ;Ever see a break?
BNE DONE ;Yes, all done
.PRINT #NOBRK ;No, never sav it
DONE: .EXIT .
CMPRIN: .PRINT #GOTBRK ;Say we caught the break
NOV #1,YES ;Remember it
RETURN ;And continue
;Completion routines are AL¥AYS exited with
;RIS PC under TSX-Plus, NEVER via RII
BRKSNT: .BYIE 0,133 ;ENT arg value block to break sentinel control
.NORD O ;Declare only °‘BREAK’ key as break char
.WORD CNPRIN ;Address of completion routine to be called
;when system notices break
YES: .NORD O ;Flag for bresk seen
AREA: BLEKY 2 ;2 word arg area for .TWAIT
TINE: JMORD O shigh word of time
JWORD 2.%60. ;2 sec * 60.tics/sec
.NLIST BEX

MESSAG: .ASCIZ /You have 2 seconds to hit the break key./
GOTBRK: .ASCIZ <15><12>/Break key pressed./
NOBRK: .ASCIZ /Never saw the break key./

.END START

\index{Terminal;Input completion routine}
\index{Completion routine;Terminal input}
\section{Terminal input completion routine}

‘The following ENT can be used to specify a completion routine which
will be triggered when the next character is entered at the terminal.
The form of the ENI is:
\begin{verbatin}

ENT 376

with RO pointing to the following argument block:

.BYTE 1,133
JMORD completion-routine

wherj completion-routine is the address of the completion routine to be entered when the next character is
typed.

On entry to the completion routine, the received character is in R0. The EMT to connect the completion
routine must be rescheduled before returning if it is desired to continue accepting characters via the com-
pletion rou‘i;me. The program should be running with single character activation and bit 12 set in the job
status word.

Example

40 CHAPTER 4. TSX-PLUS EMTS

.TITLE TTICPL
; Demonstrate terminal character input completion routine.

.ENABL LC
.DSABL GBL
.GLOBL PRTDEC
.NCALL .TTIYOUT,.SPND, .PRINT .
JsY = 44 ;Job Status ¥Word address
TISPC$ = 10000 ;IT special mode (single char input)
TI$LC = 40000 ;Enable lower case bit
SPACE = 40 ;ASCII Space
START: BIS #TT$LCITISPCS,Q#JSY ;8et single character mode
NOV #ITICPL,RO ;Point to ENT arg block to
ENT 376 ;Schedule II input char compl routine B
.SPND " ;Suspend main-line (forever in example)
CPLRIN: NOV 20,-(SP) ;Save input char carried in RO
.ITYOUT ;Echo the char
.TTYOUT #SPACE
NOV (SP)+,R0 ;Retrieve char
CALL PRIDEC ;Display its ASCII value
.PRINT #CRLF
NOV #ITICPL,RO ;Point to ENT arg block to
ENT 376 ;8chedule II input char compl routine
RETURN
ITICPL: .BYIE 1,133 ;ENT arg block for IT input compl routine
.WORD CPLRIN ;Completion routine te run
CRLF: .ASCIZ //
.END START

4.19 Mount a file structure

This EMT is used to tell TSX-Plus that a file structure is being mounted and that TSX-Plus should begiﬂ
caching the file directory for the device. The effect of this EMT is the same as doing a system MOUNT
keyboard command to enable caching. It cannot be used to mount a logical subset disk. The form of the

EMT is:
ENT 376

with RO pointing to the following argument block:

.BYTE 0,134
.WORD device-spec-address
.WORD O

where device-spec-address is the address of a word containing the RADS0 form of the name of the device on
whichi the file structure is being mounted. If there is no room left in the table of mounted devices, the carry
‘bit is set on return and the error code returned is 1.

Example
.TITLE MOUNT
.ENABL LC '

; Demonstrate ISX--Plus ENT to NOUNT (do directory caching on) a device
.GLOBL ' IRADEO ;SYSLIB RADG6O conversion subroutine

BS = 10 ;ASCII Backspace

.NCALL .PRINT,.GILIN, .EXIT
START: .GILIN #BUFFER,#PRONPT ;Ask for name of device

NOV #R60BLK ,RE ;Point to arg block for next call

CALL IRADGO ;Convert ASCII device name to RADEO

NOV #NOUNT, RO ;Point to ENT arg block to

ENT 378 ;Mount a file structure (directory caching)

BCC START ;hksk for more if OK

s

4.20. DISMOUNT A FILE STRUCTURE 41

.PRINT #NOGOOD " ;Say it was not good
.EXIT
.NLIST - BEX .)
NOUNT: .BYIE 0,134 ;ENT arg block to mount a file structure .
.WORD DEVNAN ~ ;Pointer to RAD5O name of device
‘ .MORD O ;Required O argument
RGOBLK: .WORD 3 ;Number of args for IRADGO call
) .MORD THREE ;Pointer to number of chars to convert
.WORD BUFFER ;Pointer to chars to convert
.WORD DEVNAN ;Pointer to RADG0 name of device
THREE: .¥ORD 3 ;Number of chars to convert
DEVNAN: .WORD O ;RAD60 representation of device name
BUFFER: .BLKB 80. ;GILIN input buffer

PRONPT: .ASCII /Name of device to be mounted: :/<BS><BS><BS><BS><200>
NOGOOD: .ASCIZ /Attempt to NOUNT too many devices./<7>
.END START

4.20 Dismount a file structure

This EMT can be used to tell TSX-Plus to stop doing directory caching on a particular drive. The effect of
this EMT is the same as a DISMOUNT keyboard command to disable caching. The form of the- EMT is:

ENT 3756

with RO pointing to an argument block of the following form:

.BYTE 0,135
.WORD device-spec-address
.WORD O

where dcvice-apec-addreu is the address of a word containing the RAD50 name of the device to be dis-
mounted.

Example
.TITLE DISMNT
.ENABL LC
; Demonstrate ISX--Plus ENT to DISMOUNT (stop caching on) a device
.GLOBL IRADGO ;SYSLIB RADGO conversion subroutine
BS = 10 ;ASCII Backspace

.NCALL .GTILIN
START: .GILIN #BUFFER,#PRONPT ;Ask for name of device

NOV #R60BLK ,RE ;Point to arg block for next call
CALL IRADEO ;Convert ASCII device name to RADBO-
MOV #DISNNT,RO ;Point to ENT arg block to
" ENT 376 . ;dismount a file structure (stop cacking)
BR START ;Repeat (no errors returned)
.NLIST BEX
DISMNT: .BYIE 0,135 ;ENI arg block to dismount a file structure
.MORD DEVNAN ;Pointer to RADEO name of device
.MORD 0) ;Required 0 argument
RGOBLK: .WORD 3 ;Number of args for IRADGO call
.WORD THREE ;Pointer to number of chars to convert
.MORD BUFFER ;Pointer to chars to convert
.MORD DEVNAN ;Pointer to RADGEO name of device /
THREE: .WORD 3 ;Number of chars to convert
DEVNAN: .WORD O ;RADGO representation of device name
"BUFFER: .BLKB 80. sGILIN input buffer '

PRONPTI: .ASCII /Name of device to be dismounted: : /<BS><BS><BS><BS><200>
.END START

2 CHAPTER 4. TSX-PLUS EMTS

4.21 Dismounting all file structures and logical disks

This EMT can be used to dismount all file structures for the job from directory and generalized data cache.
This dismounts all logical disks from cache as well as cached physical disks. Note that this simply removes
all logical disks from the cache tables; the logical disks are still accessible. Also note that issuing the SHOW
"SUBSETS (also SHOW LD) command will cause the logical disks to be cached again. The form of the EMT

is:
ENT 376

‘with RO pointing to an argument block of the following form:

.BYTE 2,136
.WORD O
Example

.TIITLE DNTFLS

.ENABL LC
H
; Demonstrate ENT to dismount (stop caching on) all files structures.
H

.NCALL .PRINT,.EXIT

.DSABL GBL
ERRBYT = b2 ;ENT error byte address
START: MNOV #DNIFLS,R0 ;Point to ENT arg block to
ENT 376 ;Dismount all file structures
BCC 9% ;Branch if 0K
.PRINT #ENTERR ;"Unable to dismount all files structures"
9¢: .EXIT
DNIFLS: .BYTE 2,136 ;ENT arg block to dismount file structures
.NORD O
.NLIST BEX
ENTERR: .ASCIZ /IDNTFLS-F-Unable to dismount all files structures/
.EVEN
.END START

4.22 Dismounting Logical Disks

The following EMT can be used to dismount a logical disk. The form of the EMT is:
ENT 376

with. RO pointing to the following argument block:

.BYTE 3,136
.BYTE 1ld-unit,0

where Id-unit is the logical disk unit number which must be in the range 0 to 7.

The following error codes can be returned by this EMT:

4.28. DETERMINING STATUS OF LOGICAL DISKS 43

Error
Code | Meaning

0 | Specified LD unit is not associated with a file
1 | Invalid LD unit number (must be in the range 0 to 7)
3 | Some channel is opened to a file on the logical disk

Example

.TITLE DNNILD
H
;Demonstration of the use of the ISX-Plus ENI to dismount a logical disk.

.MCALL .Pl.nﬂ, .EXIT, .CLOSE

.GLOBL PRIDEC
.DSABL GBL
ERRBYT = b2 ;ENT error byte address
START: MOV #DNILD5,R0 ;Point to ENT arg. block to
ENT 376 ;Dismount LDG:
BCS 18 ;Branch if not OK
NOV #DNTLDG,RO ;Point to ENT arg. block to
ENT 376 ;Dismount LDG6:
BCC 2¢ ;Branch if 0K
1$: MNOVB @#ERRBYT,-(SP) ;Fetch ENT error code
: .PRINT #ERRIS ;"ENT error is:"
NOV (SP)+,R0 ;Retrieve error code
CALL PRIDEC ;Display it
2¢: .EXIT
.NLIST BEX :
DNTLD6: .BYIE 3,136 ;ENT arg. block to dismount
.BYIE 5,0 ;LD5:
DNILD6: .BYIE 3,136 3ENT arg. block to dismount
.BYIE 6,0 ;LD6:
ERRIS: .ASCII /TDMNTLD-F-ENT error is: /<200>
.EVEN
.END START

4.23 Determining Status of Logical Disks

The following EMT can be used to provide the status of a LD unit. The form of this EMT is:
ENT 375
with RO pointing to the following argument block:

.BYTE 4,136
.BYTE 1d-unit,O
.WORD buffer-address

where ld-unit is the LD unit number in the range 0 to 7, and buﬁ'cr-addréaa is the address of a five-word
buffer which will receive information about the logical disk.

If the logical disk is not associated with a file then all zeros will be stored into the buffer. If the LD is
associated with a file, the first four words of the buffer will receive the RAD50 device name, file name (2
words), and extension. The fifth word is a flag word. If the LD is mounted for read-only access, bit O of the
flag word is set. If the LD is not currently ‘accessible, bit 1 is set. ‘

The following error code can be returned. by this EMT:

44

Example:

START:
1$:

21%:

91¢:
92¢:

9%:

LDSTAT:
LDUNIT:

.TITLE

.NMCALL
.GLOBL
.DSABL

CLR
CNP
BGT
.PRINT
NOV
CALL
.PRINI
MOV

BCC
.PRINT
BR

CLR
NOV
NOV
BEQ
INC
CALL
.PRINT
NOV
CALL
NOV
CALL
.PRINT
NOV
CALL

NOVB
ADD
NOV
.LOOKUP
BCS
.SPFUN
BCS
.PRINI
NOY
CALL
.PRINT

.CLOSE
.PRINT
NOV
CALL
.PRINT
BR
.PRINT
INCB
BR
.EXIT

.BYIE
.BYIE
.¥WORD

CHAPTER 4.

TSX-PLUS EMTS

Error
Code | Meaning

1 | Invalid LD unit number (must be in the range 0 to 7)

LDSTAT
.PRINT, .EXIT, .LOOKUP, .SPFUN, .CLOSE, .SERR, . HERR
PRTOCT ,PRIR60,PRIDEC
GBL
LDUNIT ;Start with LDO
LDUNIT,#7 ;Have we print info on all LD’s
1] ;Branch if not
#LDPRT ;Specify LD number
LDUNIT,RO
PRIDEC
#COLEQU
#LDSTAT,R0 ;Set up to...
376 ;Get status for this LD
2¢ ;Branch it 0.K.
#00PS ;Else "LD Status ENI Error"
2] ;And give up
SIZE ;Assume not mounted
#BUFF,R1 ;Get buffer address
(R1)+,R0 ;Get Device name
91$;BR if not mounted
SIZE ;Remember to get size
PRIRG0 ;Print device name
#COLON Rk i
(R1)+,R0 ;Get first half of file name
PRIRG0 ;Print it
(r1)+,R0 ;Get last half of file name
PRIR50 ;Print it
#DOT "
(R1)+,R0 ;Get extension
PRIRG0 ;Print it
;Irap Errors
LDUNIT, RO ;Get Device and unit number
#°RLDO,RO
RO,DEV
#AREA,#0,#DEVSPC ;0pen a channel to it
3 ;Branch on error
#AREA,#0,#373 ,#SIZE,#1,#1 ;Get the size of LD
3¢ ;Branch on error
#LSQBR B o4
SIZE,RO ;Get the size
PRIDEC ;and print it
#RSQBR B8 b
;Report errors
#0 ;Close the channel
#STAT ;" STIAIUS= "
(R1)+,RO ;Get the status
PRTIOCT ;and print it
#CRLF ;Finish the line
924
#NOTNNT ;"Not mounted”
LDUNIT ;Increment LD unit number
1$;Print info. on next LD
4,136 ;Argument block for ENT get LD status
0,0 ;LD unit number
BUFF

Natewzst’

4.24. DISMOUNTING ALL LOGICAL DISKS 45

BUFF: .BLXK¥ b ;Area where status info. is put
AREA: .BLKY 10 ;Area .LOOKUP ENT block
DEV:

DEVSPC: .RAD6O /!
.WORD 0,0,
SIZE: .WORD 0
COLON: .ASCII /
DOT: .ASCII /./<200>
STAI: .ASCII / STATUS= /<200>
LDPRY: .ASCII /LD/<200>
COLEQU: .ASCII /: = /<200>
CRLF: .ASCIZ //
LSQBR: .ASCII /[/<200>
RSQBR: .ASCII /.]/<200>
0OPS: .ASCIZ /LD Status ENT Error/
NOINNT: .ASCIZ /Not mounted/
.EVEN
.END STARY

4.24 Dismounting all logical disks

The following EMT allows dismounting of all logical disks with one EMT. The form of the EMT is:
ENT 375

with RO pointing to the following argument block:

.BYTE 5,136
.WORD O

The following error code can be returned by this EMT:

Error
Code | Meaning

3 | Some channel is opened to a file on the logical disk.

This EMT is similar to the SET LD EMPTY command. All LD’s are completely dismounted, and become
inaccessible until remounted. This is unlike the EMT to dismount all files structures which simply removes
file structures from the caching tables.

Example

.TITLE DNTALD
.ENABL LC
H
; Demonstrate ENT to dismount all logical disks.
.MCALL .PRINT,.EXIT
.GLOBL PRTIDEC

.DSABL GBL
ERRBYT = 52 ;ENT error byfo address
STARI: NOV #DNTALD,RO - ;Point to ENT arg block to
ENT 376 ;Dismount all logical disks

BCC o8 ;Branch if 0K

46 CHAPTER 4. TSX-PLUS EMTS

NOV Q@#ERRBYT,-(SP) ;Fetch ENI error code

.PRINT #ENIERR “;"Unable to dismount all logical disks. Error"
NOV (SP)+,R0 ;Retreive error code
CALL PRIDEC ;And print it

9%: .EXIT

DNTALD: .BYTE 5,136 ;ENT arg block to dismount all logical disks
.YORD]
.NLIST BEX

ENTERR: .ASCII /TDNTALD-F-Unable to dismount all logical disks. Error: /<200>
.EVEN
.END START

4.25 Determining the terminal type

The following EMT will return in RO a value that indicates what type of time-sharing terminal is being used
with the line. The form of the EMT is:

ENT 375
with RO pointing to the following argument block:
.BYTE 0,137
The terminal type is specified either when the TSX-Plus system is generated or by use of the SET TT

command (e.g., SET TT VT100). The terminal type codes which are currently defined are listed below.
The types Diablo and Qume are functionally equivalent.

Terminal-type Code
Unknown
VT52
VT100
Hazeltine
ADM3A

- LA36
LA120
Diablo & Qume
VT200

o

W =3 OB O N

A type code of zero (0) is returned if the terminal type is unknown.

Example
See the example program LNTT in section 4.4 on determining the TSX-Plus line number.

4.26 Controlling the size of a job

Under RT-11, the .SETTOP EMT is used to set the top address of a job. The TSX-Plus .SETTOP EMT
does not actually alter the memory space allocated to a job but simply checks to see if the requested top of
memory is within the region actually allocated to the job and if not returns the address of the top of the
allocated job region. The TSX-Plus .SETTOP EMT was implemented this way because many programs

4.27. DETERMINING JOB STATUS INFORMATION 47

written for RT-11 routinely request all of memory when they start regardless of how much space they
actually need.

The memory space actually allocated for a job can be controlled by use of the MEMORY keyboard command
or by use of the EMT described below. The memory size specified by the most recently executed MEMORY
keyboard command is considered to be the normal size of the job. The EMT described here can be used to
alter the memory space allocated to a job but the job size reverts to the normal size when the job exits or
chains to another program.

The form of the EMT used to change a job’s size is:
ENT = 376
with RO pointing to the following argument area:

.BYTE 0,141
.WORD top-address

“ where top-address is the requested top address for the job. If this address is larger than the allowed size of a

job, the job will be expanded to the largest possible size. On return from the EMT, RO contains the address
of the highest available word in the program space. \

A program is not allowed to change its size if it was started by use of the RUN/DEBUG command or the
system was generated without allowing program swapping. In either of these cases the EMT operates exactly
like a .SETTOP request (i.e., the requested program top address will not be allowed to exceed the normal
program size).

See also the description of the SETSIZ program in Appendix A for information about how the default
memory allocation for a program can be built into the SAYV file for the program.

Example
See the example program CKSTAT in section 4.27 on determining job status information.

4.27 Determining job status information

The information about various jobs on the system which is displayed by the SYSTAT command may also be
obtained by application programs. An EMT is provided with several subfunctions to obtain the desired job
status information. This EMT may obtain information about any job on the system, not only itself. The
form of the EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE 0,144
.BYTE line-#,sub-function
.WORD buf-address

where line-# is the number of the time-sharing line about which information is to be returned. Line numbers
are in the range 1 up to the highest valid line number for the system. Sub-function is a function code which
indicates the type of information to be returned by the EMT (see below). Buf-address is the address of the
first word of a 2-word buffer area into which the returned value is stored. Note: some of the functions only
return a single word value in which case the value is returned into the first word of the buffer area.

If an error occurs during the execution of the EMT, the carry-flag is set on return and the following error
codes indicate the type of error:

48 CHAPTER 4. TSX-PLUS EMTS

Error
Code | Meaning

0 | Indicated line number is not currently logged on.

1 | Invalid sub-function code.
2 | Invalid line number (0, or higher than largest valid line number).

Each of the sub-functions is described below:

Subfunction # 0 Check status of line. The value returned contains bit flags that indicate the status of
the job. The following bit flags are defined:

Bit Flags | Meaning

000001 This is a subprocess.

000002 This is a detached job line.
000100 Job has locked itself in memory.
000200 Job has SYSPRY privilege.

-

Subfunction # 1 Get job’s execution state. This subfunction returns a code that indicates a job’s current
execution state. The following code values are defined:

Code | Meaning

Non-interactive high priority run state.
Normal priority run state.

Fixed-low-priority run state.

Waiting on input from the terminal.

Waiting for output to be written to terminal.
Doing a timed wait.

Suspended because .SPND EMT done.
Waiting for access to a shared file.

Waiting for a inter-job message.

Waiting for access to USR (file management) module.
11 | Waiting for non-terminal I/O to finish.

12 | Waiting for access to spool file.

13 | Interactive high priority run state.

14 | Fixed-high-priority run state.

15 | Waiting for memory expansion.

B0 oo ok e

Subfunction # 2 Determine amount of memory used by job. This function returns the number of 256-
word blocks of memory that are currently being used by the job, including PLAS regions.

Subfunction # 3 Determine connect time for job. This function returns the number of minutes that a job
has been logged onto the system.

Subfunction # 4 Determine position of job in memory. This function returns the 256-word block number
of the start of the memory area allocated to the job.

Subfunction # 5 Get name of program being run by job. This function returns a 2-word value. The two
words contain the RAD50 value for the name of the program currently being run by the job.

~ Subfunction # 6 Get project and programmer number for job. This function returns a two-word value.
The: first word contains the project number that the job is logged on under; the second word contains
the programmer number.

- Subfunction # 7 Get CPU time used by job. This function returns a two-word value that contains the
number of clock ticks of CPU time used by the job. The first word contains the high-order 16-bits of
the value, the second word contains the low-order 16-bits.

e

4.27. DETERMINING JOB STATUS INFORMATION 49

Subfunction # 8 Get current job execution priority This function returns one word that contains the
current job execution priority level (0-127).

Subfunction # S Get job name for the specified line number. The return buffer must be at least 12 bytes

long.
Example
.TITLE CKSTAT
.ENABL LC }
; Demonstration of MENIOP, JSTAT and SNDNSG ENTs of ISX--Plus
ERRBYT = 62 ;ENT error code location
PRGNAN =6 ;JSTAT subfunction code to get prog. name
.MCALL .TWAIT,.EXIT
START: NOV #MENTOP,R0 ;Point to ENI arg block to
ENT 376 ;Set job size
;0nly works in swapping environment, otherwise behaves like .SEITOP
CNP RO,#HILIN ;See if we got what we wanted
BHIS AGAIN ;Go on if so
.EXIT ;else quit (cannot disp err msg from det line)
AGAIN: NOVB #1,LINE ;Check all lines starting vith #1
CHECK: NOV #JSTAI,RO ;Point to ENI arg block
ENT 376 ;Get name of job being run
BCS ERRTYP ;Go find out what kind of error
CNP BUFADD,DUNJUN ;Is this line goofing off?
BNE NEXT ;No, proceed
CNP BUFADD+2,DUNJUN+2 ;Nay be, check for sure
BNE NEXT ;No, preceed

;Send a message to the offending line
; (Each message must be < 88. bytes)

NOVB LINE,YOOHOO ;¥ho is the guilty party?
NOV #MESAG1,NSGADD ;Prepare part one of message
NOV #SEND,RO ;Point to ENT arg block to
ENT 376 ;Send a message to that line
NOY #MESAG2,NSGADD ;Prepare for part two of the message
NOV #SEND,RO ;Point to ENT arg block to '
ENT 376 - ;8end part 2 of message :
NOY #MESAGS,NSGADD ;Prepare for part three of the message
NOV #SEND,RO ;Point to ENT arg block to
ENT 376 ;8end part 3 of message .
NOV #NESAGA,NSGADD ;Prepare for part four of the message
NOV #SEND ,RO ;Point to ENI arg block to)
ENT 376 ;Send part 4 of message
NEXT: INCB LINE ;Iry next line
CNPB LINE,NAXLIN ;Have we checked them all?
BGT SLEEP ;Yes, wait avhile
BR CHECK ;Go check the rest of the lines
SLEEP: .TIWAIT #AREA,#TINE ;Come back in 5 minutes
BR AGAIN ;And try again
ERRIYP: CNPB @¥ERRBYT, #1 ;¥hich error is it
BLT NEXT ;0 --> line not logged on, try next line
BEQ 2% ;1 --> invalid sub-function code, give up
NOVB LINE,NAXLIN 32 --> line > last valid line
DECB MAXLIN ;Largest valid line number
BR SLEEP ;should only happen first time
2%: .EXIT ;Invalid code should never happen
' " ;Night as well kill job
MENTIOP: .BYIE 0,141 ;Argument block for MENTOP ENT
.WORD HILIN ;Upper address limit
JSTAT: .BYIE 0,144 ;Argument for JSTAT ENT
LINE: .BYIE 0 ;ISX-Plus line number to be checked
SUBFUN: .BYIE PRGNAN sENT subfunction
.WORD BUFADD ;Address of 2-word buffer for returned value
BUFADD: .BLXY 2 ;2 word buffer to hold stat result
MAXLIN: .BYTE 30. ;Naximum number of lines under ISX--Plus

.BVEN ;W11 be altered to max valid line #

50 CHAPTER 4. TSX-PLUS EMTS

SEND: .BYIE 0,127 ;ENT arg block to send a message

YOGHOO: .WORD O ;Destination line number

NSGADD: .WORD MESAGL ;Nessage to be sent

ARER: BLKY 2 ; -TYAIT arg area

TINE: .MORD O ;time high word
.WORD b5+60.%60. ;6min * 60.sec/min * 60.ticks/sec
.NLIST BEX

DUNJUN: .RAD5O /DUNJUN/ ;Name of illicit program

NESAG1: .ASCII <7><16><12>
.AsCII / /<16><12>
.ASCIZ /» */<16><12>

NESAG2: .ASCII /* Continued use of this system #/<16><12>
.ASCIZ /% for game playing will result */<16><i2>

NESAGS: .ASCII /* in loss of user privileges!! #/<15><i2>
.ASCIZ /* */<16><12>

NESAGA: .ASCIZ / /<16><12><T>

HILIN: .END START

4.28 Determining file directory information

This EMT returns directory information about a file. The form of the EMT is:
ENT 376
with RO pointing to the following argument block:
.BYTE chan, 145
.WORD dblk
.WORD rblk
where chan is a channel number in the range 0-16 (octal) that is currently not in use, dblk is the address of

a 4-word block containing the RADS50 file specification (device, file name, extension), and rblk is the address
of a 7-word block that will receive the information about the file. The information returned in rblk is:

Word Number | Meaning
1 Size of the file (number of blocks).
0=File not protected; 1=File is protected.
File creation date (standard RT-11 date format).
File creation time (number of 3-second units).

Starting block number of file.
Unused (reserved)
Unused (reserved)

N O Ol b N

Error
Code | Meaning

0 | Channel is currently in use.

1 | Unable to locate specified file.

2 | Specified device is not file structured.

Example

e

4.29. SETTING FILE CREATION TIME

.TITLE
.ENABL

FILINF
LC

; Demonstrate ISX--Plus ENT to return information about a file
.PRINT, .EXIT,.CSISPC, .TTYOUT ° i
DSPDAT,DSPTIS,PRIDEC

ERRBYT
STARI:

.NCALL
.GLOBL
= b2
.CSISPC
NOY
ENT
BCC
NOVB

- ASL

5%:
108:

15$:

FILINF:

FILSIZ:
PRICID:
FILDAT:
FILTIN:
FILLOC:

OUTSPC:
INSPC:
DEFLT:
FIERR:

BUFFER
SPACE2
CINUSE:
NOFILE:
BADDEV:

o se

.PRINT
.EXIT
NOV
1STB
BNE
NOVB
.PRINT
.TTYOUT
NoV
CALL
15T
BEQ
.TTYOUT
.TTYOUT
.PRINT
NOV
CALL
.PRINT
NOV
CALL
.PRINT
MOV
CALL

_.EXIT

.NLIST
.BYTE
.WORD
.¥WORD
.WORD
.WORD
.MORD
.WORD
.¥ORD
.WORD
.BLXY¥
.BLKY
.¥ORD
.WORD
.¥ORD
.¥ORD
.BLKB
.ASCII
.ASCIZ
.ASCIZ
.ASCIZ
.END

;ENT error code location

#0UTSPC, #DEFLY, #0, #BUFFER ;Get file name

#FILINF,RO
376

Q#ERRBYT,R1
) 11
FIERR(R1)

#BUFFER,RO
(20)+

108
#200,-(RO)
#BUFFER
L
FILSIZ,RO
PRTDEC
PRICID
168

#'P

»]
#SPACE2
FILDAT,RO
DSPDAT
#SPACE2
FILTIN,RO
DSPTI3
#SPACE2
FILLOC,RO
PRIDEC

BEX
0,145
INSPC
FILSIZ

(-2 -2 - -

0,0

15.

24.
0,0,0,0
CINUSE
NOFILE

 BADDEV

81.
/] /<200>

;Point to ENI arg block to
;Get information about a file
;No error?

;¥hat error

;Convert to word index
;Explain it

;Find the end of the file spec.
;End?

;No, keep looking

;No CR,LF at end

;File name

_;File size

;¥as file protected?

;File creation date
;Display date

;File creation time (3 sec resolution)

. ;Display special 3-sec time

;File starting block #

;ENT arg block to get file info.
;Pointer to RADG0 file name
;Pointer to 7 word result buffer
;File size

;Protected=1, unprotected=0
;File date (standard format)
;File time (special 3-sec format)
;File starting block number

;Pad for 2 reserved words
;0utput file specifications
;Input file specifications

;No default extensions

;ENT error message table

;Input string buffer

/TFILINF-F-Channel in use./
/TFILINF-F-Can’t 2ind file./
/TFILINF-F-Non-directory device./

START

4.29 Setting file creation time

51

The time that a file is created is stored along with other directory information under TSX-Plus. In order
to pack the time into a single word, TSX-Plus represents the file creation time in three second units. For

example, if a file was created at 11:13:22, then the specizal time representation would be 13467 (decimal).

52 CHAPTER 4. TSX-PLUS EMTS

11hr x 60min/hr X 60sec/min = 389600 sec
13 min X 60sec/min = 780 sec
22 sec = 22 sec

‘40402sec =~ 3 = 13467 3-sec units

A utility program is provided with TSX-Plus to display the creation time and other directory information
about a file. See the TSX-Plus User’s Reference Manual for more information on the FILTIM utility.

The creation date and time for a file are automatically stored by TSX-Plus in the directory entry for the
file at the time that the file is closed after being created. An EMT is provided for those unusual situations
where a different creation time is to be specified for a file after the file is created. The form of this EMT is:

ENT 376
with RO pointing to the following argument block:

.BYTE chan,146
.WORD dblk
.WORDP time

where chan is the number of an unused channel, dblk is the address of a 4-word block containing the RAD50
file specification, and time is the time value (in 3-second units since midnight) that is to be set as the creation
time for the file.

Efrror
Code | Meaning

0 | Channel is currently in use.
1 | Unable to locate specified file.
2 | Specified device is not file structured.

Example

.TITLE SFIIN
.ENABL LC

; Demonstrate ISX--Plus ENT to set file creation time
.NCALL .PRINT,.CSISPC,.EXIT,.GILIN

.GLOBL ACRTI3 ;Subroutine to convert hh:mm:ss to special
;3-sec internal time format in RO
ERRBYI = 52 ;ENT error code location
START: .PRINT #GEINAN ;Prompt for file name

.CSISPC #0UISPC,#DEFLT ;Get file name in RADGO
.GILIN #BUFFER,#GETTIN ;Prompt for and get a time

NOV #BUFFER ,R0 ;Point to time input buffer
CALL ACRIIS ;Get special time in RO
BCC 1$;Time error?
.PRINT #BADTIN ;Yes, incorrect format
.EXIT

1$: NOV RO,NE¥TIN ;Save special time
NOV #SFTIN,RO ;Point to ENT arg block to
ENT 376 ;Set creation time in file
BCC 2% ;Error?
MOVB @#ERRBYT,RO ;Yes, get error code
ASL RO ;Convert to word offset
.PRINT SFIERR(RO) ;Explain

2¢: EXIT
.NLIST BEX

SFTIN: .BYIE 0,146 ;ENT arg block to set file creation time
.¥YORD INSPC ;Pointer to RADEO file name

NE¥TIN: .WORD O ;¥ill contain new creation time

4.30. DETERMINING OR CHANGING THE USER NAME 53

0UTSPC: .BLKW 15. ; .CSISPC output files
INSPC: .BLX¥ 24. ;.CSISPC input files (first is the one)
DEFLT: .¥YORD 0,0,0,0 ;Default file extensions
SFYERR: .YORD INUSE ;SFTIN error message table
.WORD NOFILE
.WORD BADDEY
BUFFER: .BLKB 81. ; .GILIN input buffer - holds time hh:mm:ss

GEINAN: .ASCII /Set creation time in file: /<200>

GETTIN: .ASCII /New creation time: /<200>

BADTIN: .ASCIZ /TtSFTIN-F-Invalid time./

INUSE: .ASCIZ /?SFTIN-F-Channel in use./

NOFILE: .ASCIZ /TSFTIN-F-Can’t find file./

BADDEV: .ASCIZ /!SFTIN-F-Non-directory device./
.END START

4.30 Determining or changing the user name

When using the LOGON system access program, each user is assigned both a user name and a project-
programmer number. TSX-Plus provides an EMT which allows an application program to obtain the user
name or (with SETNAME privilege) to change it. User names may be up to twelve characters in length. If
the LOGON program is not used, the user name will initially be blank, although it may be changed to a
non-blank name. The form of the EMT is:

»

ENT 375
with RO pointing to the following argument block to determine the user name:

.BYTE 0,147
.WORD buff-addr

where buff-addr is a pointer to a 12-byte area to contain the user name which is returned.

To change the current user name, RO should instead point to the following argument block:

.BYTE 1,147
.WORD buff-addr

where buff-addr is a pointer to a 12-byte area containing the new user name. SETNAME privilege is required
to change the user name. If changing the user name is attempted without SETNAME privilege, the name
will not be changed and the carry bit will be set on return.

Example
.TITLE GSUNAN
.ENABL LC

; Demonstrate ISX--Plus ENT to get/set user name

ERRBYT = b2 ;ENT error code location
.MCALL .PRINT, .EXIT

START: .PRINT #NANEIS ;Preface user name
NOV #GSUNAN, RO ;Point to ENT arg block to
ENT 376 ;Get user name
.PRINT #NANBUF ;And display it
NOV #NEVYNAN,NANADD ;Point to new user name
INCB GSUNAN ;Set low bit to set name
NOV #GSUNAN,RO ;Point to ENT arg block to
ENT 376 ;Set new user name
BCC 14 ;Error?
.PRINT #NOPRIV ;Must have SEINAME privilege

1%: .BXIT

54 CHAPTER 4. TSX-PLUS EMTS

.NLIST BEX
GSUNAM: .BYTIE 0,147 ;ENT arg block to get user name
NANADD: .¥ORD NANBUF ;Pointer to receive area
NANBUF: .BLXY¥ 6 ;8ix word name area (12 bytes)
JMORD O ;:Make it ASCIZ

NEWNAN: .ASCII /CHAUNCY / ;The nev name (12 bytes)

NAMEIS: .ASCII /Your current user name is: /<200>

NOPRIV: .ASCIZ /SEINANE privilege necessary to set user name./
.END START

4.31 EMT to determine or change program name

- The following EMT allow you to determine or change the name of the current program. This changes.the
name in the SYSTAT (WHO, SHOW JOBS) display, not the directory name of the executable program
image. The form of the EMT is: '

ENT 376
with RO pointing to the following argument block:

.BYTE sub-function, 147
.WORD Dbuff-addr

If sub-function is 2 the EMT returns the current program name in RADIX-50 format in the two word buffer
peinted to by buff-addr. If sub-function is 3 the EMT changes the program name to the RADIX-50 format
name pointed to by buff-addr.

- The following error code can be returned by this EMT:

Error
Code | Meaning

2 | The name was not specified in RADIX-50 format.

Example

.TITLE SEINAN
.MCALL .PRINT, .EXIT
.GLOBL PRIDEC,RADASC

.DSABL GBL
ERRBYT = b2 ;ENT error byte address
START: NOV #GSPNAN,RO ;Point to ENT arg. to
ENT 376 ;Get program name
BCS 14 ;Branch if not 0K
NOV R3,-(SP) ;Save start addr. of name
NOY #NANBUF ,R6 ;Get addr of string to convert
NOV #2,R4 ;Say convert 2 words
CALL RADASC
NOY (SP)+,R3 ;Get start addr. of name
.PRINT 13 ;Display program name

NOY RADNAN, NANBUF ;Point to new program name
NOV ~ RADNAN+2,NANBUF+2

INCB GSPNAN ;8et low byte to set name
NOV #GSPNAN,RO ;Point to ENI arg. block to
ENT 376 ;8et program name

BCC 2¢ ;Branch it 0K

' 4.32. SETTING JOB PRIORITY 55

1$: NOVB @#ERRBYT,-(SP) ;Fetch ENT error code
. . - .PRINT #ERRIS . ;"ENT error is:"
Nov (sP)+,R0 ;Retrieve error code '
CALL PRIDEC ‘ ;Display it
2%: DECB GSPNAN ;Set low byte to get name
NOY #GSPNAN,RO ;Point to ENT arg. to
" ENT 376 : "* ;Get program name
BCS 1$;Branch if not OK
NOV R3,-(SP) ;Push 18
NOV #NANBUF,RE ;Get addr of string to convert
MOV ‘#2,24 ;Say convert 2 words
CALL RADASC
Nov (sP)+,R3 ;Pop RS
.PRINT 13 ;Display program name
EXIT
.NLIST BEX
GSPNAN: .BYIE 2,147 - ;ENT arg. block to get or
.MORD NAMBUF ;Set program name
NANBUF: .BLKW 6 ;Ivo word name area

RADNAN: .RADGO /NEWNAN/

ERRIS: .ASCII /YSEINAN-F-ENT error is: /<200>
.EVEN
.END START

4.32 Setting job priority

Jobs may be assigned priority values in the range O to 127 to control their execution scheduling relative to
other jobs. The priority values are arranged in three groups: the fixed-low-priority group consists of priority
values from O up to the value specified by the PRILOW sysgen parameter; the fixed-high-priority group
ranges from the value specified for the PRIHI sysgen parameter up to 127; the middle priority group ranges
from (PRILOW+1) to (PRIHI-1). The following diagram illustrates the priority groups:

127 —
Fixed High Priorities
PRIHI —

PRIDEF — | Normal Job Priorities

PRILOW —
Fixed Low Priorities

0—

Job scheduling is performed differently for jobs in the fixed-high-priority and fixed-low-priority groups than
for jobs with normal interactive priorities. Jobs with priorities in the fixed-low-priority group (0 to PRILOW)
and the fixed-high-priority group (PRIHI to 127) execute at fixed priority values. That is, the priority
absolutely controls the scheduling of the job for execution relative to other jobs. A job with a fixed priority
is allowed to execute as long as it wishes until a higher priority job becomes active.

The fixed-high-priority group is intended for use by real-time programs. The fixed-low-priority group is
intended for use by very low priority background tasks. Normal time-sharing jobs should not be assigned
priorities in either of the fixed priority groups.

The middle group of priorities from (PRILOW+1) to (PRIHI-1) are intended to be used by normal, inter-
active, time-sharing jobs. Jobs with these assigned priorities are scheduled in a more sophisticated manner
than the fixed-priority jobs. In addition to the assigned priority, external events such as terminal input com-
pletion, I/O completion, and timer quantum expiration play a role in determining the effective scheduling
priority.

When a job with a normal priority switches to a subprocess, the priority of the disconnected job is reduced
by the amount specified by the PRIVIR sysgen parameter. This causes jobs that are not connected to

56 CHAPTER 4. TSX-PLUS EMTS

terminals to execute at a lower priority than jobs that are. This priority reduction does not apply to jobs
" with priorities in the fixed-high-priority group or the fixed-low-priority group. The priority reduction is also
constrained so that the priority of jobs in the normal job priority range will never be reduced below the

value of (PRILOW+1).

The following EMT can be used to set the job priority from within a program. The job priority can also be set
from the keyboa.rd with the SET PRIORITY command. The current job priority, maximum allowed priority,
and fixed-high-priority and fixed-low-priority boundaries may be determined with the .GVAL request. See
the TSX-Plus System Manager’s Guide for more information on the significance of priority in job scheduling.
The form of this EMT is:

ENT 375
with RO pointing to the following EMT argument block:

.BYTE 0,150
.WORD value

‘where value is the priority value for the job. The valid range of priorities is 0 to 127 (decimal). The maximum
job priority may be restricted by the system manager. If a job attempts to set its priority to zero or less,
its priority will be set to the default value. If a job attempts to set its priority above its maximum allowed
priority, its priority will be set to the maximum allowed. This EMT does not return any errors.

Example
.IITLE GSPRI
.ENABL LC
; Demonstrate ENT to set job priority
.MCALL .GVAL, .GILIN, .PRINT,.EXIT
.GLOBL . PRTDEC
CURPRI = -16. ;GVAL offset to get current priority
MAXPRI = -18. ;GVAL offset to get maximum priority
START: .PRINT #CURIS ;"current priority is"”
.GVAL #AREA,#CURPRI ;0btain current job priority in RO
NOV RO,R1 ;Save it
CALL PRIDEC ; and display it
.PRINT #NAXIS ;"maximum priority is"
.GVAL #AREA,¥MAXPRI ;Obtain maximum allowable job priority
NOV RO,R2 ;Save it
CALL PRIDEC ; and display it
ADD #10.,R1 ;Iry to boost priority by 10
CNP R1,R2 ;Unless exceeds maximum
BLE 1 ;Use 10 larger if <= maxpri
NOY R2,R1 ;Else use maxpri
1$: NOV R1,NEVPRI ;Set new priority in ENT arg block
NOV #SETPRI,RO ;Point to ENI arg block to
ENT 376 ;Sset nev job priority
.PRINT #NEVIS ;"new priority is"
.GVAL #AREA,#CURPRI ;0btain new priority
CALL PRIDEC ; and display it
EXIT
AREA: BLKW 10 ;General ENTI arg block
SETPRI: .BYIE 0,150 ;ENT arg block to set job priority
NEYPRI: .WORD 50. ;New job priority goes here
.NLIST BEX

CURIS: .ASCII /Current job priority = /<200>

"MAXIS: .ASCII <15><12>/Naximum job priority = /<200>

NEWIS: .ASCII <15><12>/- New - job priority = /<200>
.END START

4.38. DETERMINING OR CHANGING JOB PRIVILEGES 57
4.33 Determining or changing job privileges

A TSX-Plus EMT is available to allow running programs to determine the privileges for the job and to
change privileges. This is particularly useful to check user-defined privileges. See the TSX-Plus System
Manager’s Guide for complete information on job privileges. The form of the EMT argument block is:

ENT 376
" with RO pointing to an argument block of the following form:

.BYTE 1,160

.BYTE function,privtype
.WORD buffer

.WORD O

where buffer is the address of a four word buffer which contains the privilege flags to be set or cleared or’ .
which will receive the privilege flags. Note, not all of the privilege Words may be in current use, but four
words should be reserved to allow for future expansion. Function indicates the type of operation being done
and must be 0, 1, or 2 according to the following table:

Function | Meaning
0 Read job’s privilege flags into buffer
1 Clear bits set in buffer in job’s privilege flag bits
2 Set bits set in buffer in job’s privilege flag bits

Functions 1 and 2 are bit-clear and bit-set operations so that individual privileges may be selectively changed
without affecting other privileges.

Privtype indicates which of the three sets of privilege flags are to be accessed, and must be 0, 1, or 2 according
to the following table:

Privtype | Privilege table
0 Current privileges
1 Set privileges
2 Authorized privileges

The current privileges for the job are reset to the set privileges when the currently executing program exits.
If set privileges are changed, then current privileges are changed as well. If authorized privileges are changed,
then set and current privileges are changed as well. SETPRYV privilege is required to set any new privileges
in the authorized privilege set.

Error
Code | Meaning

1 | Attempt to enable privileges for which the job is not authorized.
Only those privileges for which the job is authorized are set.

Example

.TITLE SEIPRY
.ENABL LC
.DSABL GBL
; Demonstrate ENT to determine or set privileges.
.MCALL .PRINT,.EXIT,.ITYOUT

58

SPACE

STARY:

.GLOBL
= 40
= 52
CALL
-PRINT

SHOPRV:

DSPPRV:

GSPRIV:
RCS:
CSA:

NOVB
NOV

NOV

.¥ORD
.WORD
.WORD
.NLIST
.ASCII
.ASCII
.ASCII
.ASCIZ
.ASCII
.LIST

PRTOCT

‘SHOPRV
#CRLF
#2,RC8
#1,C8A
#700,PRIVS
PRIVS+2
#GSPRIV,R0
376

1
@#ERRBYT, - (SP)
#'0, (SP)
#ERR

(SP)+
#CRLF
SHOPRV

#AUTPRV
#2,C81
DSPPRY
#SEIPRV
#1,C84
DSPPRY
#CURPRV
CSA
DSPPRY

RCS
#GSPRIV,RO
376
PRIVS,RO
PRIOCT
#SPACE
PRIVS+2,R0
PRIOCY
#CRLF

1,150

0

0

PRIVS

0
0,0,0,0
BEX

;ASCII SPACE
;ENT ERROR BYIE
;DISPLAY PRIVILEGES BEFORE

;WANT T0 SET PRIV FLAGS

;SELECT “SEI" PRIVILEGES

;SET 3 PRIV FLAGS IN PRIV WORD 1
;D0 NOT CHANGE ANY IN PRIV WORD 2
;POINT TO ENT ARG BLOCK TO

;SET SOME PRIVILEGE FLAGS

;BRANCH ON ERROR

;ELSE GET ERROR BYIE

;CONVERT T0 DIGIT

;DISPLAY PRIVILEGES AFIER

; "AUTHORIZED"

;LOOK AT AUTHORIZED PRIVILEGES
SREAD AND DISPLAY FIRST 2 PRIV YORDS
;"SET"

;LOOK AT SET PRIVILEGES

; "CURRENT"
;LOOK AT CURRENT PRIVILEGES
;DISPLAY PRIVILEGE BITS

;READ PRIVILEGES

;POINT TO ENT ARG BLOCK TO
;READ SELECIED PRIVILEGES
;GET PRIV WORD 1

;DISPLAY IIS BITS

;GET PRIV WORD 2

;GET/SET PRIVILEGE ENT
;0=READ,1=CLEAR, 2=SET

; 0=CURRENT, 1=SET, 2=AUTHORIZED
;PUT PRIV FLAGS HERE
;REQUIRED 0

;PRIVILEGE FLAGS 2 OF 4 USED

/Authorized privileges: /<200>

/Set privileges:
/Current privileges:

1

/<200>
/<200>

/Set privilege error # /<200>

BEX
START

CHAPTER 4. TSX-PLUS EMTS

4.34 Specifing that a file be placed in HOLD or NOHOLD mode

The following EMT is used to dynamically request that a file being printed through the spooler be either
held until the file is closed or begin printing as data is made available from the program. This could be used
in a situation where NOHOLD is the normal condition, but a program which uses the printer generates data
slowly. If data were passed to the printer as soon as available, then printer output from all other jobs would
be delayed until the slow job closes the output. This can be avoided by the having the slow program select
hold mode for its output. Then, other jobs can proceed to use the printer without being delayed by the slow
job. The form of the EMT to select HOLD -or NOHOLD mode on an individual file basis is:

ENT

376

e

4.34. SPECIFING THAT A FILE BE PLACED IN HOLD OR NOHOLD MODE 59

with RO pointing to the following argument block:

.BYTE chan, 151
.MORD O
.WORD flag

where chan is the channel number which has been used to open the print file and flag indicates whether
the file is to be printed as it is generated or held until the file is closed. If flag=0, the output is printed as
generated (equivalent to NOHOLD); if flag=1, then the output is not printed until the file is closed. This
EMT must be issued after a channel has been opened to the printer (through the spooler), but before any
data has been written to it. If the channel is open to any non-spooled device, then the EMT is ignored.

Example

.TITLE SPHOLD
.ENABL LC: . . @ o o

; Demonstrate the ENI to hold spooler output. until the file is closed
.MCALL .CSISPC, .LOOKUP,.READY, .WRITW, .CLOSE, .EXIT

ERRBYT = b2 ;ENT error code byte location
START: .CSISPC #0UISPC,#DEFEXT,#0 ;Get name of file to copy
BCS START ;Proceed unless error
NOV #INSPC,R1 ;Point to first input filspe
OPNFIL: .LOOKUP #AREA,#0,R1 ;Iry to open input file
BCS START ;Get a new command on error
NOY #0UISPC,R2 ;Point to output filspe
MOY #°RLP ,(R2)+ ;Put LP: in output filspe
ADD #2,R1 . ;Point to input filspc filename
NOV (R1)+, (R2)+ ;Move file name into LP filspc
Nov (R1)+, (R2)+) ; (not necessary, but convenient)
IST (R1)+ ;Skip over file extension
.LOOKUP #AREA,#1,#0UTSPC ;0pen channel to printer (spooled)
BCC " 'NOHOLD ;Proceed unless error
GIVEUP: .CLOSE #0 ;Close input file
.EXIT ;And give up
; Tell spooler to hold file until it is closed
; (wust be issued before any writes to file)
NOHOLD: NOV #SPHOLD,RO ;Point to ENT arg block to
ENT 876 ;Hold output until close
CLR R2 ;Initialize block pointer
6$: .READY #AREA,#0,#BUFFER,#266.,R2 ;Copy a block from the file
BCS NXIFIL ;Iry next file on error
.WRITY #AREA,#1,#BUFFER,#266.,R2 ;Copy the file block to LP
BCC 1] ;Error?
.CLOSE #1 ;Close print file
BR GIVEUP ;Forget it
8$: INC 12 ;Point to next block
BR (1] ;And get next block
NXTFIL: .CLOSE #0 ;Close input file
.CLOSE #1 ;and print file
18T 2(r1) ;Any input file?
BNE OPNFIL ;Repeat if so
BR STARY ;Else ask for more files
AREA: BLKY 10 ;General ENT arg block area
SPHOLD: .BYIE 1,151 ;ENT arg block to hold spool output
.YORD O ;on channel 1 until file is closed
HNH: .WORD 1 ;HNH=0 immed; HNH=1 hold til close
OUISPC: .BLX¥ 1b. ;Output file specs
INSPC: .BLKY 24. ;Input file specs
DEFEXT: .¥oRD 0,0,0,0 ;No default file types
BUFFER: .BLKY 256. ;I/0 buffer area

.END START

60 CHAPTER 4. TSX-PLUS EMTS

4.35 Program controlled terminal options

Programs may dynamically change various parameters related to terminal control. The following EMT may
be used to set various program controlled terminal options:

- ENT 376
with RO pointing to the following argument block:

.BYTE 0,152
.WORD = function-code
.WORD argument-value

where function-code is a character which specifies which option is to be set or changed, and argument-value
specifies a value used only by some options. See Chapter 3 on program controlled terminal options earlier in
this manual for more information on the specific options which may be selected and details on their effects.

Example
See the example program EMTMTH in Chapter 3.

4.36 Forcing [non]interactive job characteristics

“The following EMT can be used to cause a job to be scheduled either as an interactive job or as a non-
interactive job. Programs which do a large amount of terminal input, but which are not truly interactive jobs
in the usual sense, such as file transfer programs, should use this EMT to avoid excessive interference with nor-
mal interactive time-sharing jobs. This feature may also be selected with the R[UN]/NONINTERACTIVE

" command. See the TSX-Plus System Manager’s Guide for more information on job scheduling and the

significance of interactive vs. non-interactive jobs. The form of this EMT is:

ENT 376

with RO pointing to the following argument block:

.BYTE 0,183
.WORD mode
.WORD O

If the value of mode is 0, then the job will never be scheduled as an interactive job. If mode is 1, then the
job will be scheduled as other interactive jobs are, dependent on terminal input.

Example

.TITLE NONINT
ENABL LC ‘

; Demonstrate ENT to schedule job as interactive or non-interactive
.MCALL .TIYIN,.TIYOUT,.PRINT, .EXIT

Jsy¥ = 44 ;Job Status Yord address
IISPC = 10000 ;IT special mode bit (single-char)
CIRLZ = 32 ;ASCII CIRL-Z (move on command)
START: NOV #SINGLE,RO ;Point to ENTI arg block to

ENT 376 ;Turn on single character activation

BIS #TISPC,0#JSY ;Finish turning on single char mode
NOV #NONINT,RO ;Point to ENI arg block te

Negtrs’

%

Newss

4.87. SETTING TERMINAL BAUD RATES 61

ENT 376 ;Schedule this as non-interactive job

.PRINT #SLO¥Y ;"May be slow now if cystem busy"
1$: .ITYIN ;Get a char
CNPB RO, #CTRLZ ;If CIRL-Z
BEQ 2% ;Then move on
.TIYOUT ;Else echo it back (ve have to echo
; when in single char mode)
BR 18 ;And repeat
2%: NOV #1,SELECT ;¥ant to be interactive now
NOV #NONINTI,RO ;Point to ENT arg block to
ENT 376 ;Schedule this as an interactive job
.PRINT #FAST ;"See hov much faster now"
38: .ITYIN ;Get a char
CNPB RO, #CTRLZ ;It CIRL-Z
BEQ 48 ;Then move on
.ITYOUT ;Else echo it back
BR 3% ;And repeat
4%: .BXIT
SINGLE: .BYIE 0,152 ;ENT arg block to set term option -
.MORD 'S8 . -;5ingle char activation
.WORD O
NONINT: .BYIE 0,153 : ;ENT arg block to sched as [nonlinteractive
SELECT: .WORD 0 ;Initially make non-interactive
JMORD O
.NLIST BEX

SLOW: .ASCII /Type some characters in now. If the system has several /
.ASCII /interactive jobs/<15><12>
.ASCII /response will be slow. (Control-Z to get out /
.ASCIZ /ot this mode.)/
FAST: .ASCIZ <15><12>/Iry again. Response should be much better./
.END START . : -

4.37 Setting terminal baud rates

" The transmit/receive speed for time-sharing lines or CL lines may be set either with the keyboard command

SET TT SPEED or from within a program. Use of this EMT requires TERMINAL privilege. Line speeds may
only be set for terminal interfaces which support programmable baud rates, such as: DLV11-E, DZ(V)11,
DH(V)11 type interfaces and the PRO-350 printer, communication and QSL ports. The EMT to set line
speeds from within a program is:

ENT 376
with RO pointing to an argument block of the form:

.BYTE 0,154
.WORD line-number
.WORD line-parameters (OPLxSSSS)

where line-number indicates the TSX-Plus line number for which the speed is to be set. If line-number is 0,
then the speed is set on the line from which the EMT is issued. Line-parameters is a combined word which -
is used to specify the speed, number of data bits, and parity control. Bits 0-3 “SSSS” select the baud rate
according to the following table:

62

Speed | Octal Code
75 1
110 2
134.5 3
150 4
300 5
600 (]
1200 7
1800 10
2000 11
2400 12
3600 13
4800 14
7200 15
9600 16
19200 17

CHAPTEIH? 4. TSX-PLUS EMTS

- Split speeds (different transmit and receive baud rates) are not supported. Bit 4 (z) is not used. Bit 5 (L)
specifies the character length. If this bit is 0, the character length is 8 bits; if this bit is 1, the character
length is 7 bits. Bit 6 (P) specifies if parity control is wanted. If this bit is 0, no parity is selected and bit
7 is ignored; if this bit is 1, parity generation and checking is enabled. Bit 7 (O) selects even or odd parity
and is only meaningful if bit 6 is 1. If bit 7 is 0, even parity is selected; if bit 7 is 1, odd parity is selected.
Note that if only the speed value is specified, with all other bits zero, 8 bit characters with no parity are

selected.

A baud rate of 19200 is not supported by DEC DZ(V)11 controllers. DHV11 interfaces do not support 3600
or 7200 baud. DH11 interfaces do not support 2000, 3600 or 7200 baud. The PRO QSL interface does not
support 3600 or 7200 baud.

Example

.IITLE
.ENABL
;s Demonstrate
.NCALL
.GLOBL
.DSABL
ERRBYT = b2
START: NOV
ENT
BCC
NOVB
PRINT
NOY
CALL
9%: .EXIT
SEISPD: .BYIE
.¥ORD
.¥ORD
NLIST
ERRIS: .ASCII
.EVEN
.END

Error
Code | Meaning
1 | Job does not have TERMINAL privilege
2 | Invalid line number specified
SEISPD
LC
ENT to set a line’s transmit/receive baud rate
.PRINT, .EXIT
PRIDEC
GBL
;ENT error byte address
#SEISPD,RO ;Point to ENT arg block to
376 ;Set line speed
9¢ :Branch if 0K
G#ERRBYY,-(SP) ;Fetch ENT error code
#ERRIS ;"ENT error is:"
(SP)+,R0 ;Retrieve error code
PRIDEC ;:Display it
0,154 ;ENT arg block to set line speed
[} sLine number
14. ;Speed code for 9600 baud
BEX

/1SEISPD-F-ENT error code = /<200>

START

4.38. RAISING AND LOWERING THE DTR SIGNAL ON A LINE

4.38 Raising and lowering the DTR signal on a line

‘The following EMT can be used to raise or lower the DTR (data terminal ready — pin 20 on and EIA/RS232-
C connector) signal on a line. This is only effective if the interface supports modem control signals (e.g.,
this has no effect on a DLV11J port). This can be useful in situations where a modem or data PBX requires

the DTR signal.

The DTR signal is also manipulated by the system when connecting and disconnecting “phone” lines.

The form of the EMT is:

ENT

376

with RO pointing to the following EMT argument block:

.BYTE
.BYTE
.WORD

where line-number indicates which physical line is to be affected, speed is only used with subfunction 0 (zero),

sub-function, 154
line-number,O -

‘speed

and sub-function controls the subfunction to be performed, as follows:

. TERMINAL ‘pﬁvilege is required to issue this EMT unless the line to be affected is the job issuing the EMT.

. Example

.TITLE
.NCALL
.DSABL
.GLOBL

START: NOVY
- PRINT
.GILIN
CALL
TST
BGT
NEG
NOV
NOY
BR
1$: MOV
NOV
2%: ENT
BCC
NOVB
.PRINT
MOV
CALL
[1H EXIT
.RLIST

Efrror
Code | Meaning

0 | Set line speed (see previous description for 0,154)
Reset line XOFF status

1
2 | Raise line DTR
3 | Lower line DTR

SEIDIR

.PRINT, .EXIT, .GTLIN

GBL

ACRDEC,PRIDEC

#BUFFER,R1

#INSIRC . ;Print instructions

R1,#WHICH ;Ask for line number

ACRDEC ;Convert it from ascii number
RO ;Set or clear?

1 ;Branch if set

RO ;Positive

RO,CLRLIN ;Save line number

#CLRDIR,RO ;Point to ENT arg block to clear DIR
2% ;Branch to ENT

RO,SEILIN ;8ave line number

#SEIDIR,RO ;Point to ENT arg block to raise DIR
3756 ;Do ENT

[1] ;Branch if no error
e#62,-(SP) ;Else get error code

#ENTERR s"SET DIR error number:"
(SP)+,R0 ;Retrieve error code

PRTDEC ;And display it

BEX -

64 CHAPTER 4. TSX-PLUS EMTS

CLRDTIR: .BYIE 3,154 ;ENT arg. block to lower DIR
CLRLIN: .WORD 0,0

SETDIR: .BYTE 2,154 ;ENT arg. block to raise DIR
SETLIN: .WoRD ©,0

BUFFER: .BLKB 81.

INSIRC: .ASCIZ /To raise DIR enter the line number;/

YHICH: .ASCII /to lower enter the negative line number: /<200>
ENTERR: .ASCII /SET DIR error # /<200>

.END START

4.39 Assigning a CL unit to a time-sharing line

Time-sharing terminal lines which are not in use may be reassigned as general purpose serial I/O lines by
directing the TSX-Plus CL facility to assign a CL unit to the line. This can be done either with a keyboard
command (see the SET CL LINE=n command in the TSX-Plus User’s Reference Manual) or from within
a program. A special system service call (EMT) is available to assign a CL line from within a program. Use
of this EMT requires TERMINAL privilege. The form of the EMT is:

ENT 378
with RO pointing to an argument block of the form:

.BYTE 0,156
.WORD cl-unit
.WORD line-number

where cl-unit specifies the CL unit number to be assigned to the line, and line-number identifies the TSX—
Plus line number to be disabled as-a time-sharing line and reassigned as a CL unit. The valid range of CL
unit numbers is determined by the number of CL units defined during TSX-Plus system generation. For
-example, if 3 CL units are defined, then the valid CL units are CLO, CL1 and CL2. If line-number is zero,
then the CL unit is disassociated from the line and the line is restored to its previous function. The line
number may also refer to lines generated as dedicated CL lines. In this case, when a CL unit is disassociated
from the line, it is simply returned to a pool of lines available for CL use. It does not become redefined as
a time-sharing line.

See Chapter 7 and the T'SX-Plus System Manager’s Guide for more information on CL units.

Code | Meaning

1| Job issuing request does not have TERMINAL privilege
2 | Invalid CL unit number specified

8 | Invalid line number specified

4 | Specified line number already assigned to a CL unit

5

6

Specified line number in use for time-sharing
Specified CL unit is currently busy

Example

IITLE GEICL
.ENABL LC

4.39. ASSIGNING A CL UNIT TO A TIME-SHARING LINE

Demonstrate ENT to switch tike-sharing line to CL line

Demonstrate ENTI to allocate a device

Demonstrate .SPFUN request to CL

This example attempts to attach a CL unit to
a line vhich is linked to another machine,
allocate it for exclusive use,
modify the default CL settings,
and then start up the RT--11 VICON utility.

Since it is difficult to make logical assignments from within
a program, use a special .EXIT to pass the ASSIGN command to
KNON and then run VICON.

.NCALL .PRINT,.EXIT,.LOOKUP, .SPFUN, .PURGE

®e we we we we we we we we wo wo

.DSABL GBL
ERRBYT = 62 . ;ENT error byte address
- Js¥ = 44 ;Job Status ¥Yord address
CHNIF$ = 4000 . ;Chain information bit in JS¥
STARI:)
; Issue ENT to attach the line
NOV #ATICL,RO ;Point to ENT arg block to
ENT 376 ;Attach CL unit to I/8 line
BCC 14 ;Branch if 0K, else
; ENT error, explain it before exiting
NOVB @#ERRBYT ,R1 ;Get ENI error code
ASL R1 ;Convert error byte to word index
.PRINT ATTERR(R1) ;Print appropriate error message
BR 10$;And force simple exit
; Allocata device 3o nobody else infringes it
1$: NOV #ALOCAT,RO ;Point to ENT arg block to
ENT 376 ;Allocate CL for exclusive use
BCC 24 ;Branch if 0K, else
; ENI error, explain it before exiting
NOVB Q#ERRBYT ,R1 ;Get ENT error code
ASL R1 ;Convert to word index
. JPRINT ALLERE(R1) ;Print appropriate error message
BR 108 ;And exdit

Issue SET CL command (not the easiest way to do this).
If a channel were already open to CL, then this would
make more sense. But, as an example, why not?

B we we we

$: .LOOKUP #AREA,#0,#CLUNAN ;0Open a channel to CL
.SPFUN #AREA,#0,#251,#CLFLAG,#0,#0 ;Turn off flagged options
.PURGE #0 ’ ;Done with channel

; Set up for special exit passing commands to KNON

i NOV #CONAND ,R1 ;Point to command line text

NOV . . #510,R2 ;Point to chain info area
Nov #CONLEN, (R2)+ ;# of bytes in chain data area

3%: NOVB (R1)+,(R2)+ ;Move command lines into chain area
-CNP R1,#CONEND * ;Reached end yet?
BLO 3% ;Repeat if not

BIS #CHNIF$,Q#JSY ;Set pass command bit in JSY
; (aborts any pending command file)

CLR RO ;Required for special exit
NOV #1000, SP ;Reset stack pointer
10%: .EXIT .Dono (Note: unit remains allocated

after program exit!)
; ENT arg blocks and word buﬂors

AREA: .BLK¥ 10 ;General purpose ENI arg block

CLFLAG: .WORD 10 ;NOLFOUT flag for CL .SPFUN

ATICL: .BYIE 0,156 ;ENT arg block to take over IS line by CL
.MORD O ;Selected CL unit number
.MORD 6 _ ;8elected IS line number

ALOCAT: .BYTIE 0,166) ;ENT arg block to allocate a device
.WORD CLUNAN ;Address of 4-word device specification

CLUNAN: .RADGO /CLO/ ;Start with first CL unit

" .¥O0RD 0,0,0 ;Dummy file specification

; General messages and byte buffers
.NLIST BEX

‘COMAND: .ASCIZ /ASSIGN CLO XL/ ;Make logical assignment of XL for VICON
.ASCIZ /R VICON/ ;Run VICON (part of RTi1 V5.01 kit)

COMEND :

66

COMLEN

ATTERR:

NOPRIV:
BADCLU:
BADISL:
ALRDCL:

INUSE:

CLBUSY:

ALLERR:

ALRDAL:
BADDEV:
ALLFUL:
DEVUSE:

4.40 Allocating a device for exclusive use

.LIST BEX

.EVEN

= COMEND-COMAND ;# bytes in commands passed to EMON
IF GI <CONLEN-<1000-512>>

.ERROR 1 3 Chain data area overflow
.ENDC

JMORD O ;Attach CL ENT error message table
.WORD NOPRIV 3 1

.MORD BADCLU ;2

.WORD BADTSL ; 3

.SORD ALRDCL ; 4

JMORD INUSE ; B

.WORD CLBUSY]

.NLIST BEX

.ASCIZ /Not privileged to use this program./

.ASCIZ /Attempt to use invalid CL unit./

.ASCIZ /Attempt to use invalid time-sharing line./)
.ASCIZ /Time-sharing line already in use as CL unit./
.ASCIZ /Somebody is already using time-sharing line./
.ASCIZ /CL unit already active./ =

.LIST BEX)

.EVEN

MORD O ;Allocate ENT error table
JMORD ALRDAL H
" .MORD BADDEV ;2

.WORD ALLFUL ; 3

.YORD DEVUSE HE

.NLIST BEX

.ASCIZ /CL unit already allocated by someone else./
.ASCIZ /Cannot allocate that device./

.ASCIZ /Too many devices already allocated./

.ASCIZ /Device in use by someone else./

.LIST BEX

.EVEN

.END START

CHAPTER 4. TSX-PLUS EMTS

Devices may be allocated for exclusive use by a single user. This prevents mixing input and output on

common, but non-spooled, devices like a communications line (XL or CL devices) or a magnetic tape. - -

Access restriction by device allocation remains in effect until deallocated by the. job or until the job logs
“off. See the description of the ALLOCATE command in the TSX-Plus User’s Reference Manual for more
information on device allocation.

There are three system service calls relating to device allocation: allocate a device; deallocate a device; check = -

to see if a device is allocated by another user. Use of these EMTs requires ALLOCATE privilege. The form
of the EMT is the same for all three:

EMT

375

witk RO pointing to an argument block of the form:

.BYTE
.WORD

n, 156
device-pointer

where device-pointer is the address of a four-word block in which the first word contains the RAD50 name
of the device to be allocated and the next three words contain zeros. The specific function is defined by the
first byte of the argument block, as follows: .

Function

Allocate a device
Deallocate a device

N = O|S

Check to see if a device is allocated by another user

Nt/

4.41. JOB MONITORING 67

You can only allocate a device if no other user has already allocated the device or has a channel open to it.
If the device is allocated to another job or another job has a channel open to the device, then the number
of the job which is accessing the device is returned in RO. If a job which has already allocated the device
or has a channel open to the device is not associated with the same primary line as the job attempting to
allocate the device, then the carry bit will be set on return from the EMT and the number of the job which
is accessing the device wili be returned in RO. If the device is currently allocated by a job which was started
from the same primary line as the job which is now attempting to allocate it, then the carry flag will be
clear on return, but the other job number will be returned in RO. If both the job with the current allocation
and the job attempting to allocate the device are subprocesses, the first one to allocate the device gets the
allocation. If either is the primary line, then the primary line will get the allocation..

Error
Code | Meaning

1 | Device is already allocated by another job

Invalid device specified

Device allocation table is full (TSGEN parameter MAXALC)
Device is currently in use by another job '

Job does not have ALLOCATE privilege (subfunction to check de-
vice allocation does not require privilege)

TU B N

Example A
-See the example program GETCL in section 4.39 on assigning a CL unit to a time-sharing line.

4.41 Job monitoring

A monitoring watch may be established to allow a job to monitor the status of other time-sharing jobs. For
example, if a detached job were being used as a common file server for several other jobs, it would be useful
to know if a served program with a pending request aborts. The outstanding request could then be purged.
The monitoring facility may also be used in lieu of message channels (see Chapter 8) when only a small
amount of information needs to be communicated (e.g., one word).

When a job is being monitored, the operating system will report certain job status changes, such as logging
on, starting or' exiting a program, or logging off. In addition, the monitored job itself may issue status
reports to any job which may be monitoring it. After a job has established a monitor watch for a given
line, a completion routine is entered in the monitoring job whenever a monitor status report is issued for the
monitored line, whether the report was issued by the monitored job itself or by the system because of a status

- change. Job monitoring may be used effectively in conjunction with inter-job message communications and
with detached jobs.

There are three system service calls related to job monitoring. All have the form:

ENT 376
with RO pointing to an argument block of the form:

.BYTE n,157
.WORD job-number
.WORD completion-routine

where n designates which job monitoring function is to be performed, job-number designates the line number
which is to be monitored, and completion-routine is the address of a completion routine in the monitoring
-job which is to be entered whenever a monitor status report is generated for the line being monitored
(yob-number). The job-number may designate any primary time-sharing line, detached job or subprocess
- job number. It may not refer to a dedicated CL line. Job-numbers (lines) are assigned in the following
order: time-sharing lines in the order they were declared during system generation, starting with number
1; detached job lines; subprocess lines. Detached jobs and subprocesses are assigned to line numbers in the
order they were activated. Unused detaclied lines are reserved and are never assigned to subprocesses.

68 | CHAPTER 4. TSX-PLUS EMTS

4.41.1 Establishing a monitoring connection

The form of the argument block to establish a monitoring connection with a line is:
.BYTE 0,157
.MORD job-number
.WORD completion-routine

If job-number is zero, then all jobs are monitored, including those not currently logged on.

Error
Code | Meaning

1 | Invalid job number speciﬁéd

2 | No free job monitoring control blocks (increase TSGEN parameter

MAXMON)

The specified completion routine will be entered whenever a monitor status report is issued for the specified
job-number. On entry to the completion routine, the low order byte of RO contains the line number of the
job originating the monitor status report. Note that the same completion routine may be specified when
monitoring more than one job. The high order bit (mask 100000) of RO will be clear (0) if the monitor status
was originated by the system and will be set if the monitored job itself issued the status. R1 will contain a
16-bit status value. Status values generated by the system for monitored lines are:

Status Code | Meaning
1 Job has been initialized
2 Job has logged on using the LOGON program
3 Job has started running a program
4 Job has returned control to the keyboard monitor
5 Job has logged off

Status code 1 is generated when a logged off line is started, usually by typing a carriage-return at that
terminal. Status code 3 is generated whenever a program is either run or chained to. Status code 4 is
generated whenever a program exits or is aborted, but not when it chains to another program.

4.41.2 Cancel a monitoring connection

The form of the argument block to cancel a monitoring connection with a line is:

.BYTE 1,157
.WORD job-number

If job-number is zero (0), then all job monitoring connections established by the monitoring job (the job
issuing this EMT) are cancelled. All job monitoring requests are also cancelled if the job exits, aborts, chains
or issues a .SRESET or .HRESET.

Error |
Code | Meaning

1 | Invalid job number specified

g

4.41. JOB MONITORING 89

4.41.3 Broadcast status report to monitoring jobs

The form of the argument block to broadcast a monitor status report is:

.BYTE 2,157
.WORD status-value

where status-value is a 16-bit value to be broadcast to all jobs which are monitoring the job which broadcasts
the status-value (the job issuing this EMT). On entry to the completion routine in the monitoring job(s), the
status-value is in R1, the low byte of RO contains the job-number of the job broadcasting the status-value,
and the high-order bit of RO (mask 100000) is set (1).

Error
Code | Meaning

0 | No jobs are monitoring this line

Example

.TITLE MONCPL
.ENABL LC

; Demonstrate job monitoring completion routines.

; Vatch a dial-in line and announce vhen it is activated.
.NCALL .PRINT,.EXIT,.SPND,.RSUN

.DSABL GBL
.GLOBL RBOASC
ERRBYT = b2 ;ENT error byte address
MONLIN = 8. ;Line number to be monitored
NFYLIN = 1. ;Line number to be notified
STARI: NOV #MONJOB,RO ;Point to ENI arg block to
ENI 376 ;Schedule job monitor compl rtn
BCC 13 ;:Branch if 0K
; Job monitoring scheduling error
NOVB O#ERRBYT,R1 ;Get ENT error code
ADD #°0,R1 ;Convert to ASCII
MOVB 'R1,ERRCOD ;Stuff into error message
4%: .PRINT - #CPLERR ;Report error
EXIT ;And abort
; VWait for event on monitored line
1$: .SPND ;¥ait for event
BR 4% ;0nly get here on error
; Completion routine which is entered when event occurs on monitored line
MONCPL: NOV RO, SENDER ;Remember vhose monitor report
' MOV #MONJOB,RO ;Point to ENT arg block to
ENT 376 ;Reschedule myself
BCC 1$;Branch if 0K
NOVB Q#ERRBYT ,RO ;Get error code
ADD #°0,R0 ;Convert to ASCII
NOVB RO,ERRCOD ;Save error code
.RSUN ;Restart mainline and report error
BR 3% ;Abort completion routine
1$: IS8T SENDER ;¥as this a system generated message?
: - BNI 3% ;Ignore if not :
CNP R1,#3 ;Running program?
BNE 2% ;Branch if not
. NOV #GPRGNM,RO ;Point to ENT arg block to
ENI 376 ;Get program name
i Note that a short program may already have returned to KNON by now!
MOV #REOBLK ,RO ;Point to program name '
CALL RE0ASC ;Convert into ASCII in message

2: DEC Ri ;0 index status code

70 CHAPTER 4. TSX-PLUS EMTS

NUL #CODLEN,R1 ;Convert status code to message offset
ADD #CODBEG,R1 ;Convert to message address

MOV R1,MSADR ;Point to correct status message

NOV #NOTIFY,RO ;:Point to ENT arg block to

ENT 376 ;Send notification to operator

3%: RETURN
; ENT argument blocks and word buffers

NONJOB: .BYTE 0,157 ;ENT arg block to monitor a line
JWORD MONLIN ;Line (job) number to be monitored
.WORD - NONCPL ;Address of completion routine
NOTIFY: .BYIE 0,127 ;ENT. arg block to send text
.WORD NFYLIN ;Line number to be notified
NSADR: .¥WORD O ;Address of message to be sent
GPRGNN: .BYTE 0,144 ;ENT arg block to get program name
.BYTE NMONLIN,5 ;Line number, subfunction
.WORD RBONAN " ;Address to put RAD5O name
RGOBLK: .¥ORD REONAN ;Address of input buffer (RAD60)
.WORD PRGNAN ;Address of output buffer (ASCII)
.MORD 6 ;Number of chars to convert
RGONAM: .WORD 0,0 ;RAD60 value of program name
SENDER: .WORD O ;Copy of sending infor
;s Text and byte buffers
.NLIST BEX
AC = .
CODBEG: .ASCIZ <1E><12><7>/Job has been iritialized /
CODLEN = . - AC
.ASCIZ <15><12><7>/Job has completed LOGON /
.ASCII <15><12><7>/Job executing program /
PRGNAN: .ASCIZ /PRGNAN /
.ASCIZ <1B5><12><7>/Job returned to KNON /
ASCIZ <15><12><7>/Job logged off /

CPLERR: .ASCII /Job monitoring completion routine error /
ERRCOD: .ASCIZ /0/
.END START

4.42 Acquiring another job’s file context

One job may acquire the file context of another job. This is principally intended for detached jobs (such as
* RTSORT) which operate as file servers, so that they may access files for the job they are servicing even if
those files are on logical subset disks or are access restricted.

The following EMT may be used to acquire another job’s file context:
ENT 375

with RO pointing to an argument block of the following form:

.BYTE 0,160
.WORD job-number
.WORD O

where job-number is the number of the job whose file context is to be acquired.

"The job which issues this EMT must have GETCXT privilege except in the case where job-number specifies
the parent of the job issuing the EMT.

On successful return from the EMT, the following actions have been taken:

"~ 1. All channels for the issuing job which are opened to files on logical disks are purged.

2. All devices mounted by the issuing job are dismounted.

e

4.42. ACQUIRING ANOTHER JOB’S FILE CONTEXT 71

3. The following items are copled from the target job, replacing the previous information for the i issuing
job:
e ASSIGN commands
e ACCESS command restrictions
Logical disk information

Mounted device information

See the T'SX-Plus User’s Reference Manual for more information on detached jobs. See the 7T'SX-Plus -
System Manager’s Guide for more information on GETCXT privilege.

Error
Code | Meaning

0 | Issuing job is not pnvﬂeged to use this EMT
1 | Target job number is invalid or is not logged on"’

Example

.TITLE GEICXT
.ENABL LC :
; Demonstrate ENT to get context of another job.
.NCALL .GTLIN, .EXIT,.PRINT, .ENTER,.CSTAT, .PURGE,.TTYOUT

.DSABL GBL
. -GLOBL ACRDEC,PRIRE0
ERRBYI = b2 ;ENT error byte address
BS = 10 ;ASCII backspace BS
START: .GILIN #BUFFER,#PRNPT1 ;Prompt for line # to check
MOV #BUFFER,R1 ;Get pointer to line # string
CALL ACRDEC ;Convert to number
NOV R0, JOBNUN ;Put line number in ENT arg block
NOV ~ #GEICXT,RO ;Point to ENT arg block to
ENI 376 ;Get context of another job
BCC 1$;Branch if no error
ISTB C@#ERRBYT ;Privilege or no job?
BGT 2% ;Branch if requested line not logged on
.PRINT #NOPRIV ;No privilege for this ENT
BR 1 ;Quit
28: .PRINT #NOTION ;That job not logged on
BR 9% ;Quit
1$: MOV #~RSY,DEVNAN ;Locate SY first
CALL SHODEV ;Determine and display its device
NOV #°RDK,DEVNAN ;Same for DK
CALL SHODEV
9$: .EXIT
AREA: .BLK¥ 10 ;General purpose ENT arg block
GEICXI: .BYIE 0,160 ;ENT arg block to get job context
JOBNUN: .WORD O ;Line number of job in question
.WORD O ;Required
STATUS: .woRD 0,0,0,0,0,0 ; .CSTAT channel status result
DEVNAN: .RAD6O /DK IEMP FIL/ ;Name of temporary file
.NLIST BEX

BUFFER: .BLKB 31.
PRNPT1: .ASCII /Get context of line number - /<200>
NOPRIV: .ASCIZ /Sorry, you are not privileged to run this program./
NOTON: .ASCIZ /Sorry, that job is not currently loggod on./
ARRO¥: .ASCII / --/<76><40><200>
COLRIN: .ASCIZ /:/
CRLF: .ASCIZ //
.LIST BEX

72 CHAPTER 4. TSX-PLUS EMTS

.EVEN
; Let system translate device assignments by opening
; a temporary file and use the .CSTAT ENI.
SHODEV: .ENTER #AREA,#0,#DEVNAN,#1 ;Iry to open temporary file

BCS o8 ;Give up on error
.CSTAT #AREA,#0,#STATUS ;Iry to get channel info on file
BCS o8 ;Give up on error
NOV DEVNAN,RO ;Recover logical device name
CALL PRIRGO ;Display it
.PRINT #ARROY Bl I
MOV STAIUS+12,R0 ;Recover physical device name
CALL PRTRGO ;Display it
.ITYOUT #BS ;Back up over empty unit number
NOV STATUS+10,R0 ;Recover physical unit number
ADD #°0,R0 ;Convert to ASCII
.ITYOUT ;Display it
.PRINT #COLRIN ;Format

9¢: .PURGE #0 ;Throv away temp file
RETURN
.END START

4.43 Manipulating process windows

The TSX-Plus process windowing facility allows the system to remember the contents and status of the
terminal screen display and to redisplay windows as you switch between processes or on demand by programs.

The process windowing facility also provides a print window function which allows you to print the contents
of a window on a printer by typing a control character or by use of an EMT. Windows are only allowed on
VT200, VT100, and VT52 series terminals. The contents and status of each window is stored in a named
global region and you must have SYSGBL privilege in order to use process windows. See the T'SX-Plus
User’s Reference Manual for more information on the use of windows and window related commands (SET

WINDOW, SET PRINTWINDOW).

Each job may have up to 26 windows active at one time. A window is identified by an ID number in the
range 1 to 26. Two jobs may have windows with the same ID number without conflict.

When windowing is turned on, the system monitors all characters sent to the terminal and maintains an
updated screen image in memory. Terminal attributes such as line width, reverse/normal video, application
keypad mode, etc. are saved along with line attributes (double wide, double high), and character attributes.
The attributes retained for each character consist of blinking, bold, underlined, reverse video, and character
set information (ascii, U.K. national, DEC supplemental, or graphics—line drawing).

The most common use of windows is to completely refresh the display when switching among subprocesses
to avoid the confusion of mixed displays. In addition, a keyboard command can be used to send a copy of
the current window to a printer.

For some special program applications, it may be useful to utilize multiple windows from the same job.
System service calls (EMTs) are provided to create, select the current, delete, and print process windows.

4.43.1 Creating a window

The system service call (EMT) used to create a window has the form:
ENT 376

with RO pointing to an argument block of the following form:

.BYTE 0,161

.BYTE window-id,perm-flag
.BYTE window-vidth,max-scroll
.BYTE copy-id,copy-job

.WORD O

S

4.43. MANIPULATING PROCESS WINDOWS 73

where window-id is a window identification number in the range 1 to 26 which identifies the particular job
window. The global memory regions created for windows have names of the form WINjj5: where j7 is the
job number and ¢ is a letter which corresponds to the window ID (A=1,...,Z2=28). Different jobs may have
windows with the same ID without conflict.

Perm-flag should be either 0 or 1. If it is zero (0), the window is temporary and will be automatically
deleted when the program exits to the keyboard monitor (other than doing a chain). If perm-flag is 1, the
window is permanent and is only deleted when explicitly requested (by the delete-window EMT, or by SET
WINDOW OFF) or when the job logs off.

Window-width is the width of the window in columns and should not exceed 132. (VT52 may use only 80.)

Maz-scroll is the maximum number of lines which are allowed to scroll off the window during a time when
the window is disconnected from the terminal because a different subprocess has been selected. A value of
zero (0) may be specified to disable any scrolling. If a value of 255 is specified, an unlimited amount of
scrolling is allowed.

The copy-id and copy-job parameters can"be used to cause the system to copy certain window information
from another window as it is initializing the new window. If copy-id and copy-job are both zero, no informa-
tion is copied from another window and the supplied values (or default values) are used for the new window.
If copy-id is non-zero, is is used as the id of the window from which the information is to be copied. If
copy-job is non-zero it is the number of the job that owns the window from which the information is copied.
If copy-job is zero, the current job is assumed. The following information is copied:

1. The number of columns per line.
2. The maximum allowed number of lines to be scrolled while switched to a different process.
3. 80 or 132 column mode.

4. Light or Dark (normal or reverse video) mode.

Error
Code | Meaning

0 | Window management not included in system generation or invalid
EMT argument block.

1 | Maximum allowed number of windows are already in use. Increase
value of MAXWIN sysgen parameter.

2 | Unable to create global memory region for window. Job may not
have SYSGBL privilege or you may need to increase the value of
the NGR sysgen parameter, or there may be insufficient memory
space available.

Creating a window allocates a window control block and a global memory region for the window. The
window contents are set to all blank.

Example

.IITLE ¥INDOW
; Demonstrate use of multiple process windows.

.DSABL GBL

.ENABL LC

.NCALL .PRINT,.EXIT,.TWAIT
ERRBYT = b2 ;ENT error code address
; Create and initialize contents of 10 windows
START: MOV #10.,R1 ;Init window number

1$: MOVB R1,¥INIDL ;Point to next window

74
NOV #NAKYIN,RO
ENT 376
BCS MAKERR
NOVB R1,¥INID2
NOV #SELYIN,RO
ENT 376
BCS SELERR
NOV R1,R2
DEC 22
ASL R2
.PRINT VWINIXI(R2)

. 80B. R1,18

; Cyle through the windows for p
NOV #5,R2

2%: NOV #10.,R1

22¢: NOVB R1,¥INID2
" NOV #SELVIN,RO
ENT 376
BCS SELERR
JIWAIT #AREA,#TINE
SUB NYINS,R1

BGT 22¢

CNP NVINS,#2
BEQ 24

S50B 22,24

: Now delete half the windows
NOV #2,NVINS
NOV #9.,R1

3%: NOVB R1,¥INID3
NOV #DELVIN,RO
ENT 376
BCS DELERR
SUB NVINS,R1

BGT 3%

BR 2¢
NAKERR: MOV #METXT,RO

BR DSPERR
SELERR: NOV #SETXT,RO

BR DSPERR

DELERR: NOV #DETXT RO
: MOVB @¥ERRBYT,R1

ADD #°0,R1

NOVB R1,ECL

MOVB R1,EC2

MOVB R1,EC3

.PRINT

.EXIT

NAIWIN: .BYIE 0,161

WINID1: .BYTE O

.BYIE ©
.BYIE 80.
BYIE O
.WORD O
.WORD O
SELVIN: .BYIE 1,161
¥WINID2: .BYIE 0,0
.WORD O
DELY¥IN: .BYIE 2,161
WINIDS: .BYIE 0,0
TINE: .WORD 0,18.
NVINS: .WORD 1
AREA: .BLKY¥ 10

;Point to ENT arg block to
;Create a window

;Branch on error

;Point to next window
;Point to ENT arg block to
;Select a window

;Branch on error

;Copy window number

;0 index

;Convert to word index
;¥rite something to each screen
;Repeat through ten windows
seudo-animation.

;Loop b times with all vindows
;Init window number

;Point to next window
;Point to ENT arg block to
;Select next window
;Branch on error

;Delay a little bit

;Step to next window

;And repeat

;Already doing half?
;Branch if so

;Repeat all windows 5 times

;0nly do half of them
;Delete odd numbered windows
;Point to next window
;Point to ENT arg block to
;Delete a window

;Branch on error

;Point to next window
;Repeat through b5 windows
;Repeat rest forever
;Point to error message
;Go display error

;Point to error message
;Go display error

;Point to error message
;Get error code

;Convert to digit

;Store in all

; output

; strings

;Display error message

sENT arg block to make window
;¥indow id number

;Temporary window

;Narrow window

;No scrolling restrictions

;ENT arg block to select window
;¥indow id number,0

;ENT arg block to delete window
;¥indow id number,0

;Time delay in ticks (arbitrary)
;¥indow id increment

;General ENT arg block

¥WINTXT: .WORD LiL,L2L,LSL,LAL,LSL,LGR,L4R,L3R,L2R,L1R

.NLIST BEX
LiL: ASCII <12>
LaL: JASCII <12><12>
L3L: JASCITI <12><12><12><12>

/ */<200>
/] */<200>
/ %/<200>

LAL: JASCITI <12><125<12><125<12><12> /] */<200>
LBL: ASCIT <12><12><12><12><12><12><12>/ */<200>

CHAPTER 4. TSX-PLUS EMTS

4.48. MANIPULATING PROCESS WINDOWS 5

LBR: JASCII <12><i2><12><12><12><12><12>/ */<200>

L4R: JASCIT <12><12><12><12><125<12> / */<200>
L3R: JASCIT <12><12><12><12> / */<200>
LaR: JASCII <12><12> . . / */<200>
LiRk: LASCII <12> / */<200>

METXT: .ASCII /Window creation error #/
EC1: .ASCIZ /o/
SETXT: .ASCII /¥indow selection error #/
EC2: .Asc1z /o/
DETXT: .ASCII /¥Window deletion error #/

EC3: .AsCIZ /o/
.LIST BEX
.END START

4.43.2 Selecting a current window

When this EMT is executed, the terminal screen is cleared and the selected window is drawn on the screen.

The EMT argument block used to select the current window has the form:

.BYTE 1,161
.BYTE window-id,0
.WORD O

where window-id is the window identification number as specified when the window was created. A window-
id value of zero (0) has a special meaning: it causes windowing to be dlsabled for the job but the contents
of all existing windows are retained and may be reselected later.

Error
Code | Meaning

0 | Window management not included in system generation or invalid
EMT argument block.

3 | Unable to locate window with specified window-1d.

4.43.3 Deleting windows
The EMT argument block used to delete a window has the following form:

.BYTE 2,161
.BYTE window-id,0

where window-id is the identification number of the window to be deleted. There are two special values for
window-id which may be used with this EMT: a value of zero (0) causes all temporary windows for the job
to be deleted; a value of 255 (decimal) causes all windows for the job, both temporary and permanent, to
be deleted.

The global memory region used by a window is freed when the window is deleted.

Error
Code | Meaning

0 | Window management not included in system generation or invalid
EMT argument block.

3 | Unable to locate window with specified window-td.

76 CHAPTER 4. TSX-PLUS EMTS

4.43.4 Suspending window processing

Window processing may be suspended to allow characters to be sent to the terminal which are not processed
by the window manager. If the job does not have a currently active window, the suspend and resume
functions have no effect. The EMT 375 argument block to suspend window processing is:

.BYTE 3,161

4.43.5 Resuming window processing

Window processing which has been suspended may be resumed by EMT 375 with the following argument

block:

.BYTE 4,161

4.43.6 Printing a window

The contents of a window may be printed by issuing EMT 375 with the following argument block:

.BYTE 5,161
.BYTE window-id,0

where window-1d is the id number used when the window was created. The WINPRT»program must be
executing in order for the window to be printed.

Error
Code | Meaning

0 | Window management not included in system generation
3 | Unable to locate window with specified window-id
4 | WINPRT program not running

4.44 Switching Between Subprocesses

The following EMT allows a running program to switch terminal control between subprocesses as if a CTRL—
W-digit sequence had been typed. The EMT has two functions: it initiates new subprocesses, and switches
terminal control between processes.

The form of the EMT is:
ENT 376
with RO pointing to the following argument block:

.BYTE sub-function, 162

.BYTE subprocess-number,0

.BYTE return-process,initiate-only
.WORD command-file-pointer

.WORD O

4.44. SWITCHING BETWEEN SUBPROCESSES 7

If sub-function is 1 the EMT initiates a new subprocess and optionally switches terminal control to the
subprocesses. Error code 5 is returned if the specified subprocess is already active. If sub-function is 2
the EMT switches terminal control between already-active subprocesses. Error code 6 is returned if the
specified subprocess is not already active. If sub-function is 0 (zero), the EMT initiates a new subprocess if
the specified subprocess is not already active (and switches to it if the initiate-only flag is 0 (zero)), or just
switches control to the subprocess if it is already active.

Subprocess-number indicates the subprocess number and is analogous to the digit typed after CTRL-W
when manually switching between subprocesses. The value must be in the range 0 to MAXSEC (a TSGEN
parameter). If the number is too large, then the EMT returns with error code 2 and MAXSEC in RO.
Specifying O (zero) for subprocess-number switches back to the primary process (just as typing CTRL-W-0).
If a —1 (minus one) is specified for subprocess-number, the system locates the first unused subprocess number
and uses it. The number of the selected subprocess is returned in RO on completion of the EMT.

Return-process indicates which process is to be returned to when the process initiated by the EMT logs off.
Specify 0 (zero) to cause return to the primary process; specify 1 to return control to the process which is
executing the EMT to initiate the subprocess.

Instiate-only controls whether the terminal connection is switched to the subprocess. If initiate-only is 0
(zero), the subprocess is initiated (if it has not already been initiated) and terminal control is switched to
the subprocess. If snitiate-only is 1 the subprocess is initiated but terminal control remains with the current
. process.

Command-file-pointer is the address of an ASCIZ string containing the file specification of a command file to
be executed when the subprocess is initiated. This command file executes without start-up privilege following
any other start-up command file specified with the SET SUBPROCESS/FILE command. If command- file-
pointer is 0 (zero) no command file is executed.

The return-process, initiate-only, and command-file-pointer parameters are only used when initiating a new
subprocess. They are ignored if this EMT is used to switch between subprocesses that have already been
initiated.

The following error codes can be returned by this EMT:

Error :

Code | Meaning '
1 | You are not authorized to use subprocesses
2 | Specified subprocess number is too large
3 | All of your subprocesses are already active
4 | Insufficient memory space available for process
5 | Specified subprocess has already been initiated
6 | Specified subprocess has not been initiated

Example

.IITLE SUBPRC

iDemonstration of the use of the ISX-Plus ENT to initiate subprocesses
.MCALL .PRINT, .EXIT,.TWAIT
.GLOBL PRTDEC :

.DSABL GBL
ERRBYT = b2 ;ENT error byte address
STARI: NOV #SUBPRC,RO ;Point to ENT arg. block to

2%: ENT 376 ;Intiate subprocess

18 , . CHAPTER 4. TSX-PLUS EMTS

BCC 98 . ;Branch if OK
MOVB Q#ERRBYT,-(SP) ;Petch ENI error code
.PRINT #ERRIS ";"ENT error is:"
NOV (SP)+,R0 ;Retrieve error code
CALL PRTIDEC ;Display it
98: .EXIT ;And exit
.NLIST BEX
SUBPRC: .BYIE 1,162 ;ENT arg. block to initiate subprocess
.BYIE 1,0 ;number 1
.BYTIE 1,1 ;Return to starting process and init. only
.WORD STRIFL ;Startup command file
.¥ORD 0

ERRIS: .ASCII /TSUBPRC-F-ENT error is: /<200> .
STRTFL: .ASCIZ /SY:SUBPRC.CON/ ;File spec. for startup com file for subproc.

.END START

4.45 Mounting Logical Disks

The following EMT allows logical disks (LD’s) to be mounted from within running programs just as if
MOUNT command was used. The form of the EMT used to mount a logical disk is:

ENT 375
with RG pointing to the following argument block:

.BYTE - chan,163
.BYTE 1ld-unit,read-only-flag
.WORD file-name-pointer

where chan is the number of an I/O channel which must be closed at the time that the EMT is executed.
This channel is used during EMT processing to access the file to which the LD unit is being associated. The
channel will be closed on return from the EMT. Ld-unit is the binary value of the LD unit number that is
being mounted; it must be in the range 0 (zero) to 7. Read-only-flag is O (zero) to allow both reads and writes
to take place to the LD unit. Set read-only-flag to 1 to disallow writes to the LD unit. File-name-posnter
is the address of a four-word block of data containing the RAD50 device name, file name, and extension, of
the file with which the LD unit is to be associated. The specified LD unit must not be in use (associated
with a file) at the time that this EMT is executed.

The following error codes can be returned by the EMT:

Code .| Meaning

0 | Channel provided is already open

1 | Invalid logical disk unit number (must be 0-7)

2 | Logical disk support not generated into system
3 | Logical disk unit is already associated with a file
4 | Invalid file specification (null device or file)

5 | Invalid logical unit number nesting

6

Unable to open specified file

Example

Neenns

Nz’

4.45. MOUNTING LOGICAL DISKS

ws ‘we we

ERRBYT

START:

2%:

NNILDG:

MNTLD6:

LDBNAN:
LD6NAN:
ERRIS:

.IITLE

Demonstration

.NCALL
.GLOBL
.DSABL

= b2

.CLOSE
.CLOSE
NOV
ENT
BCS
Mov
ENT
BCC
NOVB
.PRINT
NOV

" CALL

.CLOSE
.CLOSE
.EXIT
.NLIST
.BYIE
.BYIE
.WORD
.BYIE
.BYIE
.WORD
.RADGO
.RADGO
.ASCII
.EVEN
.END

MNILD

of the use of the ISX-Plus ENI to mount a logical disk.

.PRINT, .EXIT,.T¥AIT, .CLOSE
PRIDEC
GBL

;ENT error byte address
#0 ;Insure channel is closed
#1 ;Insure channel is closed
#NNTLD6,RO ;Point to ENT arg. block to
376 ;Mount LD6:
14 ;Branch if not 0K
#MNTILD6,RO ;Point to ENI arg. block to
376 ;Mount LD6:
2¢ ;Branch if 0K
CH#ERRBYY,-(SP) ;Fetch ENT error code
#ERRIS s"ENT error is:"
(SP)+,R0 ;Retrieve error code
PRIDEC ;Display it
#0 ;Close channel
#1 ;Close channel
BEX
0,163 ;ENT arg. block to
5,0 ;Mount LDb:
LDENAN
1,163 ;ENT arg. block to
6,0 ;Mount LD6:
LD6NAN
/DUBJINOYREKDSK/ ;.RADEO of file to mount as LDb:

/DUBSYSNONDSE/ ;.RADBO of file to mount as LD6:
/INNILD-F-ENT error is: /<200>

START

80

CHAPTER 4. TSX-PLUS EMTS

v

Chapter 5

Shared File Record Locking

TSX-Plus allows several programs to have the same file open simultaneously. In order to control access to
such files, TSX-Plus provides system calls to lock shared files and records within shared files. Through the
record locking facility a program may gain exclusive access to one or more blocks in a file by locking those
blocks. Other users attempting to lock the same blocks will be denied access until the first user releases the
locked blocks. The TSX-Plus shared file facility also provides data caching on blocks being read from shared
files.

Note that shared file access protection is only meaningful for cooperating jobs requesting shared access. This
scheme does not prevent other jobs from opening or writing to files if those jobs do not adhere to the file
sharing protocol. :

The usual protocol for updating a shared file being accessed by several users is as follows.
Open file.

Tell TSX—Pius that file is shared.

Lock all blocks in file which contain desired record.

. Read locked blocks into memory.

. Make update to record.

. Write updated blocks to file.

. Uniock blocks.

Repeat steps 3—7 as needed.

. Close file.

Use of shared files and record locking requires RLOCK privilege.

DIBOL record locking procedures

ASubr,outines to contfol recora locking from within DIBOL programs are provided with TSX-Plus. These are

B ~ discussed in Appendix D.

Record locking from other languages

Record locking may be interface& to other languages with appropriate subroutine calls. Record locking under
COBOL-Plus is built into the run-time library provided with COBOL~Plus. The remainder of this chapter
describes the techniques used to control shared file access and record locking.

81

82 CHAPTER 5. SHARED FILE RECORD LOCKING

5.1 Opening a shared file

Before a file can be used with shared access it must be opened by using a standard .LOOKUP EMT. After
the file has been successfully opened, the following EMT may be used to declare the file to be opened for
shared access. The form of this EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE chan, 126
.WORD access-code

where chan is the number of the I/O channel open to the desired file and access-code is a value indicating
- the type of access protection desired for the file. The following access codes are recognized:

Code | Protection | Access
0 Exclusive | Input
Exclusive | Update

Protected | Input
Protected | Update
Shared Input
Shared Update

U B O DD

The access code specifies two things:

- o the type of access that you intend to make to the file (input only or update) and

e the type of access that you are willing to grant to other users of the file.
There are three protection classes:

EXCLUSIVE access means that you demand exclusive access to the file and will allow no other users to
access the file in any fashion (input or update).

PROTECTED access means that you will allow other users to open the file for input but wish to prohibit
any other users from opening the file for update.

SHARED access means that you are willing to allow other users to open the file for both input and update
access.

When this EMT is executed, TSX-Plus checks your specified protection mode and access type with that
previously declared for the file by other users. If an access conflict arises because of your specified access
characteristics an -error code of 4 is returned for the EMT. If no access conflict is detected, your specified
access code is saved with the file and will be used to check for conflicts with future shared access requests
issued by other users.

Normally all files that are declared to TSX-Plus using this EMT are enabled for use of the data caching
facility (see description below). However, in some cases it may be desirable to suppress data caching for .
certain files. For example, sequential access files usually benefit little from data caching and enabling data
caching for these files causes the data cache buffers to be used non-productively when they could be providing
a better service for other types of files. To disable data caching for a file set bit 8 (octal 400) in the access-
code word. When shared access is declared with bit 8 set, new data is not brought into the data cache when
the file is read. However, if the data being read is already stored.in the cache because of a read by another
user, it is used. When data being written to a file is currently stored in the cache, the data in the cache is
updated even if the file is declared to be non-cached.

g

e

5.1. OPENING A SHARED FILE 83

It is possible to have several channels simultaneously open to different shared files. The exact number of
channels that can be open to shared files and the total number of shared files that may be opened are
specified when the TSX-Flus system is generated.

Once all access to a shared file is completed, the I/O channel should be closed using the standard .CLOSE
or .PURGE EMTs. See the next section for information about saving the status of a channel that has been
opened to a shared file.

The error codes that can be returned by this EMT are listed below:

Error .
Code | Meaning : |

0 | Job does not have RLOCK privilege or system does not include
shared-file support

Channel has not been opened to a file.
Too many channels opened to shared files.
Too many shared files open.

File protection-access conflict

W B

Example

.TITLE SHARED
.ENABL LC
; This program cooperates with the example program (SHARE2) in the
; following section to demonstrate shared file access protection.
.MCALL .PRINT,.GILIN,.TWAIT,.EXIT, .READY
.MCALL .LOOKUP,.CLOSE, .SAVESTAIUS, .REOPEN, .PURGE

ERRBYT = b2 ;ENI error byte
EXUP = 1. ;Shared file access code: Exclusive, Update
PRIN = 2. ;Shared file access code: Protected, Input
BUFSIZ = 266. ;Number of words in a disk block
START: .LOOKUP #AREA,#0,#SHR1 ;Open SHR1.DAT
BCC 1$;Branch if 0K
.PRINT #LKPERR ;Lookup error message
EXIT
1$: MOV #EXUP,<SHRFIL+2> ;Set Exclusive, Update access
NOV #SHRFIL,RO ;Point to ENT arg block to
ENT 376 ;Declare SHR1.DAT as a shared file
;with Exclusive and Update access
BCC 2% ;Branch if sharing 0K
JNP ENTERR ;Explain the error and quit
2%: .READY #AREA,#0,#BUFFER,#BUFSIZ,#0 ;Read block 0 of SHR1.DAT
BCC 3% ;Branch if read 0K
.PRINT #RDYERR) ;Say there was a read error
.EXIT
3%: .PRINT #BUFFER ;Print out the file (must have 0 or 200 byte)
.SAVESTATUS #AREA,#0,#BLOK1 ;Save channel O status for reuse
BCC 48 ;Branch if savestatus 0K
.PRINT #SVSERR ;Savestatus error message
.EXIT
48: Nov #SAVSHR,RO ;Point to ENT arg block teo
ENT 376 ;Save shared file status
.PURGE #0 ;Purge the channel for reuse
.LOCKUP #AREA,#0,#SHR2 ;Open SHR2.DAT
BCC 11} ;Branch if 0K
.PRINT #LKPER2 " ;Say bad lookup on SHR2
EXIT
5$: NOV #PRIN,<SHRFIL+2> ;Set Shared, Input access
NOV #SHRFIL,RO ;Point to ENT arg block to

ENT 376 ;:Declare SHR2.DAT as a shared file

84

BCC
JNP
64: .READY
BCC
PRINT
EXIT
74: PRINT
.PRINT
.TYAIT
.PURGE
.GILIN
;This job will

.REOPEN #AREA,#0,#BLOK1

.READY
PRINT
.CLOSE
.EXIT
ENTER2: MOV
ENTERR: NOVB
DEC
ASL
PRINT
PRINT
EXIT
AREA: .BLKY
BLOK1: .BLKY
FILNUN: .¥WORD
TIME: .¥YORD
SHRERR: .WORD
.¥ORD
.¥ORD
.¥YORD
.NLIST
SHR1: .RADGO
SHR2: .RAD60O
SHRFIL: .BYIE
.YORD
SAVSHR: .BYIE
NOTOPN: .ASCII
XSSCHN: .ASCII
XSSFIL: .ASCII
AXSCON: .ASCII
SHRINN: .ASCIZ
SHR2NN: .ASCIZ
LKPERR: .ASCIZ
LKPER2: .ASCIZ
SVSERR: .ASCIZ
RDVERR: .ASCIZ
RDVWER2: .ASCIZ
PRONPT: .ASCII
.ASCII
.ASCIZ
‘PRNPT2: .ASCII
BUFFER: .BLXKY
.END

CHAPTER 5. SHARED FILE RECORD LOCKING

(1] ;Branch on no error

ENTER2 ;Say error on SHR2 sharing

#AREA, #0,¥BUFFER,#BUFSIZ,#0 ;Read block 0 of SHR2.DAT

74 ;Branch if read 0K

#RDVYER2 ;Say read error on SHR2

#BUFFER ;Print out the contents (1 line, null filled)
#PRONPT ;Say it’s time to try companion program
#AREA,#TINE ;Wait 30 seconds to run other program

#0 ;Nov, release SHR2

#BUFFER,#PRNPT2 ;¥Wait for return from subprocess
be suspended for output while gone to subprocess

;And get SHR1 back

#AREA, #0,#BUFFER , #BUFSIZ,#1 ;Read in second block of SHR1

#BUFFER ;And print it to prove status was saved
#0 ;Release SHR1

#SHR2NN,FILNUN ;Point to alternate file error
@#ERRBYT ,RO ;Get the error type

RO ;Zero offset

RO ;Convert to word offset

SHRERR (RO) ;Print the appropriate error message
FILNUN ;And the file name

10 ;ENT arg block area

[;Savestatus area for SHR1.DAT

SHRINN ;File name for error message
0,30.%60. ;30.sec * 60.tics/sec

NOTOPN ;Pointer to ENT error messages
XSSCHN

XSSFIL

AXSCON

BEX

/DX SHR1 DAT/
/DX SHR2 DAT/
0,126

1

0,122

;File descriptor for SHR1.DAT

;File descriptor for SHR2.DAT

;ENT arg block to declare shared file
;Exclusive Update access (GEIS CHANGED)
;ENT arg block to save shared file status

/Attempt to share unopened channel/<7><200>

/Too many channels opened to shared ﬁlol/<7><200>

/Too many shared files open/<7><200>

/Attempt to protect already protected shared ﬁlo/<7><200>
/: SHR1.DAT/

/: SHR2.DAT/

/Lookup error for SHR1.DAT/<T>

/Lookup error for SHR2.DAT/<7>

/Error occurred attempting to save SHR1.DAT file status/<7>
/Error occurred while reading SHR1.DAT/<7> .

/Error occurred vhile reading SHR2.DAT/<7>

/Go to a subprocess and RUN SHARE2 which attempts /<15><12>
/to share the same files (SHR1.DAT, SHR2.DAT)./<15><12>

/¥aiting 30 seconds /<>

/¥hen you have returned, hit RETURN to continue/<200>
BUFSIZ

START

See also the example program SHARE2 in the section on saving the status of a shared file channel.

5.2 Saving the status of a shared file channel

A standard .SAVESTATUS EMT may be used to save the status of a shared file channel. If this is done, all
blocks that are being held locked in the file remain locked until the channel is reopened and the blocks are
unlocked (see below).

When using a single channel number to access several shared files it is convenient to initially do a .LOOKUP
on each file, then declare the file to be shared (EMT above), and then do a .SAVESTATUS. The channel

5.2. SAVING THE STATUS OF A SHARED FILE CHANNEL 85

being used to.access the set of files can then be switched from one file to another by doing a .PURGE
followed by a .REOPEN. However, before doing the .PURGE, TSX-Plus must be told that you wish to save
the shared-file status of the file, otherwise all locked blocks will be unlocked and the file will be removed
from the shared-file list. The form of the EMT used to perform this function is:

ENT 375
with RO pointing to the following argument block:
.BYTE . chan,122

where chan is the I/O channel number. The effect of this EMT is to suspend the connection between the
shared file information table and the I/O channel. Any blocks that are currently locked in the file remain
locked until the channel is reopened to the file (by using a standard .REOPEN EMT). After saving a shared
file status, the channel may be freed by using a .PURGE EMT.

If the same file is opened more than once concurrently using different channels in the same program, and the
channels are suspended by using the preceeding EMT, the system reassociates the correct shared-file context
with the channel when it is reopened by matching the channel number used with the . REOPEN EMT with
that used with the suspend EMT. Thus if the same file is opened more than once using different channels
in the same program and is used with record locking, it is important to use the same channel number when
suspending the file and reopening it. It is all right to switch the channel number between suspending file
access and reopening it if the file is only open on one channel at a time within the program.

Example

.TITLE SHARE2

.ENABL LC
; This program cooperates with the example program (SHARED) in the
; previcus section to demonstrate saving of shared file status with
; the .SAVESTAIUS ENT.

.MCALL .LOOKUP,.PRINT,.EXIT,.READ¥ -

.MCALL .CLOSE,.T¥AIT

ERRBYT = b2 ;ENT error byte
BUFSIZ = 2b66. ;Size of disk file block
START: .LOOKUP #AREA,#0,#SHR1 ;Try to open a file which is access locked
BCC 18 ;Branch if 0K
.PRINT #LKPERR ;Say couldn’t get the file
BR 3¢ ;Go on to try second file
1%: NOV #SHRFIL,RO ;Point to ENI arg block to
ENT 376 ;Declare file for shared access
BCC 2¢ ;I got the file, branch to read it
CALL EXPLER ;Else explain why
PRINT #INSHR1 ;Say we can’t share SHR1
.CLOSE #0 ;Release channel 0
BR 34 ;Go on to next file
2¢: JREADY #AREA,#0,#BUFFER,#BUFSIZ,#0 ;TIry to read block 0 of SHR1
.PRINT #BUFFER ;Display it for kicks
.CLOSE #0 ;Done with SHR1 for the moment
3%: .LOOKUP #AREA,#0,#SHR2 ;Try to open SHR2
BCC as ;Branch if 0K
PRINT #LKPER2 ;Say ve couldn’t even open it
BR (1] ;Go on to try SHR1 again
4%: NOY #SHRFIL,RO ;Point to ENT arg block to
ENT 376 ;Declare file for shared access

;Access Input, Update to show lockout
; though we don’t write in this example

BCC 3] ;Branch if we can share it
CALL EXPLER ;Explain why not

PRINT #AGAIN ;Say ve will try again later
.TWAIT #AREA,#TINE ;¥ait b seconds and

BR 48 ;Iry again

86 ‘ CHAPTER 5. SHARED FILE RECORD LOCKING

B$: .READY #AREA,#0,#BUFFER ,#BUFSIZ,#0 ;Read block 0 of SHR2
.PRINT #BUFFER ;Prove that we got it
.CLOSE #0 ;Done with SHR2

6$: .LOOKUP #AREA,#0,#SHR1 ;Try SHRL again
BCC T ;Branch if it worked
.PRINT #LKPERR ;Say vwe couldn’t do it
.EXIT

7%: NOV #SHRFIL,RO ;Point to ENT arg block to
ENT 376 ;Declare shared file
BCC 104 ;Branch it 0K
CALL EXPLER ;And explain the error
.PRINT #STLLOX ;8ay it was still locked
BR 11$;And quit

108: .READY #AREA,#0,#BUFFER,#BUFSIZ,#1 ;Read in block 1
.PRINT #BUFFER ;And display it

11%: .CLOSE #0 ;Done with SHR1
.EXIT ,

EXPLER: NOVB @#ERRBYT,RO ;Find out why can’t share it
e DEC RO ;Convert to zero index

ASL RO ;Nake into word offset
.PRINT SHRERR(RO) ;Say vhy ve couldn’t get it
RETURN
.NLIST BEX

AREA: .BLK¥ 10 ;ENT arg block

SHRFIL: .BYIE 0,125 ;ENT arg block to declare file shared
.YORD 8 ;Access Shared, Update

SHRERR: .WORD NOTOPN ;Shared file error message pointers

.WORD XSSFCH

JWORD XSSFOP

.WORD AXSCON
TIME: .YORD 0,5.260. ;5.8ec % 60.tics/sec
SHR1: .RAD6O /DK SHR1 DAI/ ;Input file #1 name
SHR2: .RAD6O /DK SHR2 DATI/ ;Input file #2 name
NOTOPN: .ASCIZ /Cannot share unopened file/
XSSFCH: .ASCIZ /Too many channels opened to shared files/
XSSFOP: .ASCIZ /Too many shared files open/
AXSCON: .ASCIZ /Shared file protected by another job/
INSHR1: .ASCIZ /On first try at SHR1.DAY/
LEPERR: .ASCIZ /Unable to lookup SHR1.DAT/
LEPER2: .ASCIZ /Unable to lookup SHR2.DAT/
AGAIN: .ASCIZ /Can’'t access SHR2.DAT, will try again in 5 seconds/
STLLOK: .ASCIZ /On second try at SHR1.DAT/

.EVEN
BUFFER: .BLKY BUFSIZ ;Input read buffer
.END START

See also the example program SHARED in the section on opening a shared file.

5.3 Waiting for a locked block

The following EMT can be used to lock a specific block in a file. If the requested block is locked by another
job,-the requesting job will be suspended until the desired block becomes available. The form of the EMT

is:
ENT 376
with RO pointing to the following area:

.BYTE chan,102
.WORD block

where chan is the number of an I/O channel that has previously been declared to be open to a shared file
and block is the number of the block in the file to be locked. Other blocks in the file which were previously

NS

e

5.8.

locked remain locked. The maximum number of blocks which may be simultaneously held locked is specified
when TSX-Plus is generated. A block number of ~1 (octal 177777) can be used to request that all blocks
in the file be locked. If several users reqnest the same block, access will be granted sequentially in the order
that the requests are received.

Example

ERRBYT
BUFSIZ
START:

1$:

38:

48$:

5$:

.TITLE
.ENABL

.NCALL

= b2
= 2566.
.LOOKUP

BCC
.PRINT
.EXIT
NOV
ENT
BCC
NOVB
DEC
ASL
.PRINT
.CLOSE
.EXIT
Nov
ENT

BCC

BHI
PRINT
BR
PRINT

BR
.PRINT
.TWAIT

MOV

BCC
.PRINT
BR

JTHAIT

NOV
ENT
BCC -
.PRINT
.READY
.PRINT

.PRINT

WAITING FOR A LOCKED BLOCK

Error
Code

Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support

1 | Channel is not open to a shared file
2 | Request to lock too many blocks in file

LOCKYW
LC

This program cooperates with the example program (LOCK) in the next
section to demonstrate shared file record locking.

JPRINT, .EXIT, .I¥AIT, .LOOKUP, .READY, .CLOSE

#AREA, #0, #SHR:
1$
#LEPERR

#SHRFIL,RO
376

38
Q#ERRBYT,RO
RO

RO

SHRERR (RO)
0

#LOCKY,RO

. 876

1]
Q#ERRBYT,#1
't

#SFCNOP

24

#XSLXBL

24

#PRONPT
#AREA , #SEC20
#UNLOCK,RO
375

#AREA, #SEC10
#CKVWSHR ,RO
376

1]

#CHANGD

;ENT orror ccde byte
;¥ords per disk block
;Open SHR1.DAT
;Branch if 0K

;Say bad lookup

;Point to ENT arg block to
;Declare shared file
;Branch if 0K

;Get the error code

;Nake zero index

;Convert to word offset
;Print the error message
;Give back the channel

;Point to ENT arg block to .-

;Lock block 0 of SHR1.DAT .
:(Job 1is suspended until bloek available
;to be locked)

;Branch when block is ready

;Which error?

;Too many blocks locked?

;¥asn’t open to shared file!

;Give up

;Too many locked blocks in file
;(Defined by NXLBLK parameter in ISGEN)
;Give up

sSwitch lines to attempt access
;¥ait 20 seconds before unlocking
;Point to ENT arg block to

;Unlock a single block

;Branch if 0K

;¥asn’t shared file!

;Give up

;¥ait 10 seconds for companion.
;Point to ENT arg block to

;Check for writes to shared file
;If none, wrap up

;Say we have nev data

#AREA,#0,#BUFFER , #BUFSIZ,#0 ;Get block 0

#BUFFER

;Show current contents block 0

#AREA,#0,#BUFFER , #BUFSIZ,#1 ;Get block 1

#BUFFER

;Show contents block 1 .

88 ' CHAPTER 5. SHARED FILE RECORD LOCKING

BR DONE

8¢: .PRINT #NOCHNG ;8ay nothing has changed

DONE: .CLOSE #0) ;Free up channel
.EXIT ’
.NLIST BEX

AREA: BLEKY 10 ;ENT arg block area

SHRFIL: .BYIE 0,126 ;ENT arg block to declare shared file
WORD 4 ;Access Shared, Input

LOCKY: .BYIE 0,102 ;ENT arg block to lock shared file block
JMORD O ;Block number to be locked

UNLOCK: .BYIE 0,113 : ;ENT arg block to unlock shared file block
.MORD O ;Block number to be unlocked

CKWSHR: .BYIE 0,121 ;ENT arg block to check writes to shared file

SHRERR: .WORD NOIOPN ;Shared file error message table

.MORD XSSFCH
.WORD XSSFOP
.MORD AXSCON
SHR1: .RADGO /DK SHR1 DAT/ ;File name to be shared
SEC20: .WORD 0,20.#60. :20.sec * 60.tics/sec
SEC10: .WORD 0,10.#60. ;10.sec * 60.tics/sec
NOTOPN: .ASCIZ /Channel not opened to shared file/<7>
XSSFCH: .ASCIZ /Too many channels opened to shared files/<7>
XSSFOP: .ASCIZ /Too many shared files open/<7>
AXSCON: .ASCIZ /File protection access conflict/<7>
LKPERR: .ASCIZ /Unable to open SHR1.DAT/
SFCNOP: .ASCIZ /Can’t lock or unlock block not open to shared file/
XSLKBL: .ASCIZ /Can’t lock so many blocks in one file/
CHANGD: .ASCIZ /Data has been writtem to file. Contents follow:/
NOCHNG: .ASCIZ /Data in file is unchanged/
PROMPT: .ASCII - /Block 0 in SHR1.DAT will remain locked for 20 sec/<15><12>
.ASCIZ /Go to another line and RUN TLOCK to test it/<7>

BUFFER: .BLKW¥ BUFSIZ
.END START

5.4 Trying to lock a block

This EMT is similar in operation to the previous EMT—it is also used to request that file blocks be locked.
The difference ‘is that if the requested block is already locked by another user the previous EMT suspends
the requesting program whereas this EMT does not suspend the program but rather returns an error code.
As above, a request to lock block #-1 is treated as a request to lock the entire file. If the block is available
it is locked for the requesting user and no error is reported. The form of this EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE chan, 103
.WORD block

where chan is the number of the I/O channel associated with the file and block is the number of the block
which is to be locked.

Error
Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support

Channel is not open to a shared file.

Request to lock too many blocks in file.
Requested block is locked by another user.
Entire file is locked by another user.

W Y

s

5.4. TRYING TO LOCK A BLOCK

Example

JTITLE LOCK
.ENABL LC
; This program cooperates with the example program (LOCKY) in the
; previous section to demonstrate shared file record locking.
" .NCALL .PRINT,.EXIT,.WRITVW,.TWAIT,.LOOKUP,.CLOSE

ERRBYT = b2 ;Error byte address
START: .LOOKUP #AREA,#0,#SHR1 ;Try to oper SHR1.DAT
BCC 14 ;Branch if 0K
.PRINT #LKPERR ;8ay we couldn’t open
JEXIT
1$: NOV #SHRFIL,RO ;Point to ENT arg block to
ENY 376 ;Declare shared file
BCC 3% ;:Branch if 0K e
NOVB G#ERRBYT,RO ;Get error type
DEC RO ;Convert to zero index
ASL RO ;Nake into word offset
-PRINT SHRERR(RO) ;Display the error type
28: - .CLOSE #0 : ;:Release the channel
EXIT ;And give up
3%: NOV #LOCK,RO ;Point to ENT arg block to
) ENT 376 -3Iry to unlock block 0
BCC 1] ;Branch if 0K
CNPB @#ERRBYT ,#2 ;¥hich error wvas it
BLO 48 ;Wasn’t open to share file?
BEQ 13] ;Request to open too many blocks in file?
.PRINT #¥AIING ;Block locked by another user
.TWAIT #AREA,#TINE ;¥ait 3 seconds
BR 3t ;And try again
4$: .PRINT #NOPNSF ;Not open to shared file
BR 24 ;Give up
b%: .PRINT #XSLKBL ;Too many blocks locked in file
BR 24 ;Give up ’
6$: .YRITY #AREA,#O,#BUFFER,#BUFSIZ,#0 ;Rewrite block 0
NOY #UNLALL,RO ;Point to.ENT arg block to
ENT 376 ;Release all blocks locked by this program
.PRINT #GOBACK ;Nessage: done, go back to original line
BR 24 :Done
.NLIST BEX
AREA: .BLK¥ 10 ;ENT arg block
SHR1: .RADEO /DK SHR1 DAI/ ;Name of shared file
SHRFIL: .BYIE 0,126 ;ENT arg block to share file on chan 0
WORD 3 ;Access Protected, Update
LOCK: .BYIR 0,103 ;ENT arg block to lock block on chan 0
.¥ORD] ;number of block to be locked
UNLALL: .BYIE 0,101 ;ENT arg block to unlock all blocks on chan 0
; (Only applies to blocks locked by this job)
TINE: .WORD 0,3.260. ;3.8ec * 60.tics/sec
SHRERR: .¥WORD SFCNOP ;File sharing ENT error table

.WORD XSSFCN
.WORD XSSFOP
.WORD AXSCON
SFCNOP: .ASCIZ /Channel not open to file/<7>
XSSFCN: .ASCIZ /Too many chennels open to shared files/<7>

' XSSFOP: .ASCIZ /Too many shared files open/<7>

AXSCON: .ASCIZ /Shared file access conflict/<7>

LKPERR: .ASCIZ /Couldn’t open SHR1.DAT/<7>

WAITNG: .ASCII /Requested block not available for locking/<16><12>
.ASCIZ /¥ill try again in 8 seconds/

GOBACK: .ASCIZ /Done, log off and go back to original line/

NOPNSF: .ASCIZ /Channel not open to shared file/<7>

XSLEKBL: .ASCIZ /Attempt to lock too many blocks in file/<7>

.EVEN

BUFFER: .ASCII /(SHR1)This line was written by the program LOCK./
.Asc1z / /<16><12>

BUFSIZ = <.-BUFFER+1>/2 ;Number of words to write

.BYIE 0,0 ;Safety bumper
.END START .

89

90 CHAPTER 5. SHARED FILE RECORD LOCKING

5.5 Unlocking a specific block
The following EMT is used to unlock a specific block in a file. The form of the EMT is: .
ENT 376
with RO pointing to the following argument block:

.BYTE chan,113
.WORD block-number

where chan is the number of the I/O channel opened to the shared file and block-number is the number of
the block to be unlocked.

Error
Code | Meaning

0 | Job does not have RLOCK vprivilege or system does not include
shared-file support

1 | Specified channel not opened to a shared file

Example
" See the example program LOCKW in the section on waiting for a locked block.

5.6 Unlocking all locked blocks in a file

The following EMT is used to unlock all blocks held locked in a file. The form of the EMT is:
ENT 376
with RO pointing to the following argument area:
.BYTE chan,101
where chan is the I/O channel number open to the shared file. When this EMT is executed all blocks

previously locked by the user on the shared file are unlocked. Blocks locked by the user on other files are
not released nor are blocks of the same file that are locked by other users.

Error
Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support

1 | Channel is not open to a shared file.

Example
See the example program LOCK in the section on trying to lock a block.

e

5.7. CHECKING FOR WRITES TO A SHARED FILE : o1

5.7 Checking for writes to a shared file
The following EMT can be used to determine if any other user has written to a shared file. The form of the
EMT is:
ENT 376
with RO pointing to the following argument block:
.BYTE chan,121

where chan is the I/O channel number opened to the shared file. If no other user has written to the file
since the file was opened by the user issuing this EMT or since that last time this EMT was issued for the
file, the carry-flag is clear on return from the EMT.

Error
Code | Meaning

0 | Job does not have RLOCK privilege or system does not include
shared-file support or channel not opened to shared file

2 | Some other job has written to file since last check

This EMT is useful when data from a shared file is being held in a program buffer. If no other user has
written to the file, then the data is still valid. However, if the data in the file has been rewritten then it must
be reread. The usual sequence of operations in this situation is to first lock the block whose data is in the
program’s buffer, then do the EMT to see if the file has been written to. If the file has not been modified
the data in memory is valid and can be used, otherwise the block must be reread from the file.

Example
See the example program LOCKW in section 5.3 on waiting for a locked block.

5.8 Data caching

Data caching is a technique provided by TSX-Plus to speed access to files. When TSX-Plus is generated
a certain number of 512-byte buffer areas may be set aside for data caching. These buffer areas are part of .
the resident system data area and are not associated with any particular job. There are two kinds of data
caching: generalized data caching; and shared-file data caching. Both kinds may used automatically with
minimal intervention on the part of the programmer or operator. Generalized data caching applies to all
files on MOUNTed devices, while shared-file data caching applies only to files which have been declared as
shared files. Generally, only one of these types is selected during generation of a TSX-Plus system. The
following discussion applies to shared-file data caching. See the TSX-Plus System Manager’s Guide for more
information on data caching.

Each time a request is issued to read a shared file, a check is made to see if the blocks being read are currently
stored in the data cache. If so, the data is moved from the cache buffer to the program buffer and no disk
I/O operations are performed. When data in the cache buffers is accessed, a use count is incremented.
Periodically, the use counts for all buffers are divided by two. If the data blocks being read are not currently
in the cache, the data is read from the disk into the program buffer and then it is moved into the cache
buffers with the lowest use count.

When a write operation is done to a file that is being cached, a check is made to see if the data being written
is currently stored in the cache. If so, the cache buffers are updated. In any case the data is written to
the disk. In other words, this is a write-through cache; the disk file is always updated and caching does not
improve the performance of writes.

All data files that are declared to TSX-Plus for shared access (using EMT 375 with function code 125) are
eligible for data block caching regardless of their access protection type. Data caching on a shared file may
be disabled by setting bit 8 (octal 400) in the access-code word of the EMT argument block when the file is
declared for shared access. Data caching is particularly effective for COBOL-Plus ISAM files.

92

CHAPTER 5. SHARED FILE RECORD LOCKING

Chapter 6

Message Communications Facilities

b2

TSX-Plus provides an optional facility that allows running programs to send messages to each other. This
message communication facility allows programs to send messages through named channels, check to see
if messages are pending, and suspend execution until a message is received. TSX-Plus provides EMTs for
each of these operations which are described below. Use of named message channels requires MESSAGE
privilege.

6.1 Message channels

Messages are transferred to and from programs by using TSX-Plus Message Channels. A message channel
accepts a message from a sending program, stores the message in a queue associated with the channel and
. delivers the message to a receiving program when requested. Message channels are totally separate from
I/O channels.

Each message channel is identified to the sending and receiving programs by a one to six character name.
The total number of message channels is defined when TSX-Plus is generated. The names associated with
the channels are defined dynamically by the running programs. A message channel is said to be active if any
messages are being held in the queue associated with the channel or if any program is waiting for a message
from the channel. When message channels become inactive they are released and may be reused.

Once a message is queued on a channel, that message will remain in the queue until some program receives
it or the TSX-Plus system is halted. A program may exit after queuing a message without affecting the
queued message. This allows one program to leave a message for another program that will run later.

6.2 Sending a message

The following EMT is used to queue a message on a named channel. If other messages are already pending
on the channel, the new message is added to the end of the list of waiting messages. The sending program
continues execution after the EMT and does not wait for the message to be accepted by a receiving program.
During processing of the EMT the message is copied to an internal buffer, and the sending program is free
to destroy its message on return from the EMT. The form of the EMT is:

ENT 376
with RO pointing to the following argument area:

.BYTE 0,104

.WORD chnadr
.WORD msgadr
.WORD msgsiz

93

94 CHAPTER 6. MESSAGE COMMUNICATIONS FACILITIES

where chnadr is the address of a six byte field containing the name of the message channel (ASCII with
trailing blanks if the name is less than six characters), msgadr is the address of the beginning of the message
text, and msgsiz is the message length in bytes.

Error
Code | Meaning

0 | Job does not have MESSAGE privilege or system does not include
message channel support.

1 | All message channels are busy.

[

Maximum allowed number of messages already in message queues.

4 | The transmitted message is too long. The message is truncated to
maximum allowed length.

5 | Maximum number of message requests pending.

The system manager may alter parameters during TSX-Plus generation to alleviate these error conditions.

Example

.TITLE SNDNSG

.ENABL LC
; Demonstrates use of the ISX-Plus ENT to queue a message to the interprocess
; message communication facility.

.NCALL .EXIT,.PRINT,.GILIN

ERRBYT = 52 ;ENT error byte
START: .GILIN #MSGBUF,#NSGPRT ;Get the message to be queued
: MOV #NSGBUF,R1 ;Point to beginning of buffer
1$: ISTB (R1)+ ;Find end of message
BNE 13 H

SUB - #<NSGBUF+1>,R1 ;Determine message length
;accounting for post-increment

NOV R1,NSGLEN ;Set message length in ENTI arg block
.GILIN #CNLBUF,#CNLPRT ;Get the six character channel name
MOV #MSGBLK,RO ;Point to ENI arg block to
ENT 376 ;Send message on named channel
‘BCC 9% ;Branch if no error
NOVB O#ERRBYT ,RO ;Which error?
ASL RO ;Convert to word index
.PRINT ERRIBL(RO) ;Display the appropriate message
.EXIT
0¢: CLRB CNLBUF+6 . ;Make channel name ASCIZ
.PRINT #DONEOK ;Inform user message queued
.PRINT #CNLBUF s;on channel CNLBUF
.EXIT
.NLIST BEX
NSGBLK: .BYIE 0,104 ;ENT block: send message on named channel
.WORD CNLBUF ;Address of channel name
.WORD NSGBUF ;Address of message
MSGLEN: .WORD O ;Char length of message
ERRTBL: .WORD NOPRIV ;Table of send error messages

.WORD BSYERR

.WORD FULERR

.WORD OHOH ;Error code 3 not used

.WORD TRNERR
NOPRIV: .ASCIZ /?SNDNSG-F-No privilege or no message support./
BSYERR: .ASCIZ /?SNDNSG-F-All message channels are busy./
FULERR: .ASCIZ /?SNDNSG-F-Maximum number of messages have been queued./
OHOH: .ASCIZ /1SNDNSG-F-This is a non-existent error./
TRNERR: .ASCIZ /1SNDNSG-¥-Message was too long, truncated./
MSGPRT: .ASCIZ /Message to be queued: /
CNLPRT: .ASCII <15><12>/Channel Name (six characters max): /<200>
DONEOK: .ASCII /Message gqueued on channel /<200>

.EVEN
CNLBUF: .BLKB 80. ;First 6 chars to contain file name
NSGBUF: .BLKB 80. ;Nessage buffer.

.END START

6.3. CHECKING FOR PENDING MESSAGES 95

6.3 Checking for pending messages

The following EMT is used to receive a message from a named channel if a message is pending on the channel.
If no message is pending, an error code (3) is returned, and the program is allowed to continue execution.

The form of the EMT is:
ENT 376
with RO pointing to the following argument area:

.BYTE 0,106

.WORD chnadr
.WORD msgadr
.WORD msgsiz

where chnadr points to a field with a six character channel name, msgadr points to the buffer in which the

message is to be placed, and masgsiz is the size of the message buffer (bytes).

If a message is received, its length (bytes) is placed in RO on return from the EMT. If the message is longer
than the message buffer (msgsiz), only the first part of the message will be received.

Error
Code | Meaning

0 | Job does not have MESSAGE privilege or system does not include
message channel support.

1 | All message channels are busy.
3 | No message was queued on the named channel.
4 | Message was longer than the receiving buffer.
5 | Maximum number of message requests pending.
Example
.IITLE GEINSG

; Demonstrates use of the ISX-Plus ENI to check for pending messages in the
; interprocess message communication facility.
.MCALL .EXIT,.PRINT,.GILIN

ERRBYT = b2 ;ENT error byte
START: .GTLIN #CNLBUF,#CNLPRT ;Get the channel name
Nov #NSGBLK ,RO ;Put ENI argument block address in RO
ENT 376 sENT to check channel for message
BCC 6% ;Error?
ISIB C#ERRBYT ;No privilege?
BNE 18 ;Branch if different error
.PRINT #NOPRIV
BR 9
1%: CNPB G¥ERRBYT, #4 ;0nly two errors possible
BEQ 2¢ ;0verflow message buffer?
.PRINT #NONERR ;No message
BR 98
2%: .PRINT #IRNERR ;Print truncation warning
5$: .PRINT #PNDNSG ;Print message preamble
.PRINT #NSGBUF ;Print actual me<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>