TSX-Plus
System Manager's
Guide

ssh computer systems, inc.

TSX-Plus
System Manager’s
Guide

s&h computer systems, inc.

Fifth Edition
First Printing -- November, 1985

Copyright © 1980, 1981, 1982, 1983, 1984, 1985.
S&H Computer Systems, Inc.,

1027 17th Avenue South

Nashville, Tennessee USA

37212-2299

615-327-3670

The information in this document is subject to change without notice and should
not be construed as a commitment by S & H Computer Systems Inc. S & H assumes
no responsibility for any errors that may appear in this document.

NOTE: TSX®, TSX-Plus®, PRO/TSX-Plus™, COBOL-Plus®, PRO/COBOL-Plus™, RTSORT®,
and PRO/RTSORT™ are proprietary products owned and developed by S&H Computer
Systems, Inc., Nashville, Tennessee, USA. The wuse of these products 1is
governed by a licensing agreement that prohibits the licensing or distribution
of these products except by authorized dealers. Unless otherwise noted in the
licensing agreement, each copy of these products may be used only with a single
computer at a single site. S&H will seek legal redress for any unauthorized
use of these products.

A license for RT-11 is required to use this product. S&H assumes no responsi-
bility for the use or reliability of this product on equipment which is not
fully compatible with that of Digital Equipment Corporation.

Use, duplication, or disclosure by the Govermment is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and
Computer Software clause at 52.227-7013.

Questions regarding the licensing arrangements for these products should be
addressed to S&H Computer Systems, Inc., 1027 17th Ave. South, Nashville,
Tennessee 37212-2299, 615-327-3670, TELEX 786577 S AND H UD.

TSX, TSX-Plus, PRO/TSX-Plus, COBOL-Plus, PRO/COBOL-Plus, RTSORT, PRO/RTSORT,
Adaptive Scheduling Algorithm, and Process Windowing are trademarks of S&H
Computer Systems, Inc. DEC, DIBOL, PDP, Professional 300 Series, Q-BUS, RT-11,
UNIBUS, VAX, VMS and VT are trademarks of Digital Equipment Corporation. DBL
is a trademark of Digital Information Systems Corporation.

N’

INTRODUCTION

PRIVILEGES

CONTENTS

ACCOUNT AUTHORIZATION PROGRAM .
Account entry information .
Command summary

Authorizing an account
Modifying an account

.

. .

Deauthorizing an account .

Listing information about
Listing account usage statistics

Creating a charge information file
Resetting account usage statistics

Exiting from TSAUTH .
Use of indirect files within commands . . .

accounts

Chapter

SYSTEM AND FILE ACCESS SECURITY
System password feature . .

Start-up command files

Log-off command files . . .
The RUN/LOCK switch .
Use of the LOGON facility .

The
The

ACCESS command

SET MAXPRIORITY command
INSTALL command . .

DEVICE HANDLERS
Device handler extensions and restrictions

RT-11 version number checking
I1/0 queue element extension
Device handlers use of PARs
Extensions for the LSI-11 bus
Device handler programmed requests

.FORK requests

. .

.

Chapter

.

Contents - 1

.

. e o .

. . e o

. e o o

. . e o

. . LY

12
12
14
14
15
15
15
16
16
16

19
19
20
22
22
22
23

25
25

29
29
29
29
30
31
31
31

.SYNCH and completion requests
.TIMIO and .CTIMIO requests
Generating device handlers for use under TSX—Plus
Building device handlers « . . .
Defining device handler attributes
Debugging a device handler
Internally queued device handlers

Chapter 5

PROGRAMMING FOR SPECIAL DEVICE HANDLERS . . . « « . .
Special TSX-Plus device handlers
Communication line handler (CL)
VTCOM/TRANSF support and the CL handler . .
Terminal/Communication line cross connection

RKO6/RKO7 handler (DM) . « « ¢ « &« « o o «

IEEE GPIB handler (IB) + v « &« « o o o« o o &

Virtual memory handler (VM)

Chapter 6

TERMINAL AND CL INPUT/OUTPUT PROCESSING

Terminal input character processing
Interrupt level input character processing .
Fork level input character processing . . .
Input character processing
CL input character processing
Terminal output character processing
Program level output character processing .
Interrupt level output character processing
CL output character processing . . . « « « « « .
Terminal and modem protocols « .« . .
Interface cards 0 0. . .
Wiring . « o ¢ v ¢ v ¢ v vt e e e e e e e
Communication parameters . . « « +« &« o« & « .
Character frames . . « ¢« ¢ ¢« « o« « o« &
Parity . .« ¢« « ¢« ¢ ¢ ¢ v v 0 0 e v .
Automatic baud rate determination . . .
Break keys o 00 000 0.
7 or 8 data bits ¢ o o . .
Flow control (XON/XOFF) .+ v ¢« ¢ o« v o « o &
Terminals . . ¢ ¢« « ¢« ¢ ¢ ¢ ¢ ¢« o o e o .
Modems . . . ¢ ¢ ¢ ¢« ¢ ¢ ¢ ¢ v e e e e e
TSX-Plus system generation of terminal lines
TBLDEF ¢« ¢« ¢ ¢« ¢« ¢« ¢ o« o o o s o o o &

Multiplexer definitions (DZDEF, DHDEF and

LINDEF & ¢ ¢ ¢ ¢ o« o o o o o o o o o
LINEND and MUXEND « ¢ ¢ &« « ¢ o o o o &

Troubleshooting . . « « & ¢ & v ¢« v o o o &
A note about hardware addresses

Unknown configuration
Using ODT « « &« & ¢ ¢ ¢« o o ¢ o o o o o

Contents - 2

.

. . .

33
33
33
34
35
38
40

41
41
41
49
50
50
51
51

53
53
54

55

56
57
57
58
58
59
59
60
61
62
62
62
63
64
64
65
66
70
70
71
71
72
72
72
72
73

N

N

Replace the device

Break—out boxes
References « « « ¢ o o o « o o &
Chapter 7

SYSTEM OPERATION . . « « v ¢ ¢ & o & o « &

Memory organization

Physical layout of TSX-Plus . .
User memory .« « « o o o o o o &
I/0 mapping « « « ¢ « ¢ 0 4 4 0 o0 . .
Job scheduling o o . .
Job priorities
Execution states

Job scheduling algorithm
Job swapping ¢ o o . .
Real-time interrupt processing . . .

Interrupt service routines . . .

Interrupt completion routines .

Window Print Operation
Chapter 8

SYSTEM TUNING « « & & o « o o o o o o « .

Memory utilization

System memory utilization . . .
User program memory utilization
Job scheduling optimization
User program optimization
I/0 optimization« « « . . .
I/0 wait overlap with computation
Device spooling
Caching . . . « . « ¢« ¢« o+ . .
Virtual memory handler (VM) . .

Chapter 9

SYSMON - DYNAMIC SYSTEM DISPLAY UTILITY .

Creating and running SYSMON
SYSMON menu . « « « « o o o« o o o « &
System status display
Process execution status display .

Terminal status display
Message channel display
User times display «
CPU modes display

Directory cache display
Shared file data cache display . . .
Data cache display . . . «
CL device display . . « « « « « « « .
Exiting SYSMON ¢« « « « « « .

Contents - 3

75
75
76

77
77
79
82
82
83
83
85
88
89
90
90
20
92

95
95
95
926
97
101
102
102
104
104
109

111
i11
113
114
116
118
119

120
121

122
123
124
125
125

Appendix A

STARTUP ERROR MESSAGES . « & & ¢« & v v v o« o« o o« o &

e e e e e 127

SYSTEM ERROR MESSAGES . + ¢ ¢ ¢ v ¢ ¢ ¢ & o « & &

e e e e e 133

Contents -~ 4

INTRODUCTION

The purpose of the TSX-Plus System Manager”s Guide is to provide information
necessary to manage the system resources for the TSX-Plus operating system. It
is intended to provide more detailed information on the internal operation of
TSX-Plus for people who are already familiar with the features provided. See
the TSX-Plus Reference Manual for information on the features provided by
TSX-Plus.

Chapter 1 - Privileges and Privilege Commands

TSX-Plus provides twenty seven privileges to be specified on a line-by—line or
user-by—user basis. Privileges may be specified during program installation
which temporarily authorized program execution without granting privilege to
the user.

Chapter 2 - Account Authorization Program

An account authorization program may be used by the system manager to grant
access to the system by authorizing accounts. The facility allows the system
manager to group accounts by project/programmer number, assign privileges, and
set the maximum job execution priority. Execution of a start—up command file
can also be specified which may contain system and file access security
restrictions.

Chapter 3 - System and File Access Security

The system manager can impose certain restrictions on system use and file
access by selecting available security options. Terminal lines or authorized
users can be locked to a program, limited in access to devices or files, or
restricted to a maximum priority for program execution.

Chapter 4 — Device Handlers

The information in this chapter provides the system manager (and system
programmers who wish to write special device handlers) an understanding of the
extensions and restrictions imposed on device handlers in the TSX-Plus
environment. Building and debugging device handlers is discussed.

Chapter 5 - Programming for Specific Device Handlers

Special device handlers are provided (or restricted) for use in the TSX-Plus
environment. Information concerning the programming and use of these special
device handlers (CL, DM, IB, and VM) is presented.

Chapter 6 - Terminal and CL I/0 Processing

The information in this chapter provides the system manager with an under-
standing of the internal operation of the terminal and communication line (CL)
handler. Modem control and the RS232 pin connection required for phone support
are discussed.

Chapter 7 — System Operation

An understanding of the internal operation and organization of TSX-Plus
provides the system manager with the the basic knowledge necessary for
optimizing system performance. The system overview provides information
concerning memory organization (with a detailed map of the TSX-Plus physical
memory layout), I/0 mapping, and execution scheduling (including a job
scheduling flow diagram and algorithm).

-1-

Introduction

Chapter 8 - System Tuning

With the basic knowledge of the organization and operation of TSX-Plus, the
system manager can utilize various tools to better optimize the TSX-Plus
execution environment. Suggestions concerning optimization for memory, I/0,
and execution scheduling are provided.

Chapter 9 - SYSMON — Dynamic System Display Utility v
The SYSMON utility displays information about system activities and resources.
This wutility can help the system manager gain more information about the

specific environment to facilitate resource optimization.

Appendices

Appendix A describes the error messages which can be generated by TSX-Plus when
it is started (R TSX). Appendix B describes the fatal system error messages
generated when abnormal conditions occur during operation of TSX-Plus.

N

li_Privileges

Each job has associated with it a set of privilege flags that control which
system services are available to the job. Privilege authorization is con-
trolled by the system manager and may be allocated on a line-by-line basis or,
if the LOGON facility is used, on an account-by-account basis. See the chapter
describing the TSAUTH program for information about authorizing accounts with
specific sets of privileges.

1.1 Privilege names

The following list of privileges shows the privilege keyword (e.g., ALLOCATE),
the privilege word (1 or 2) which contains the privilege flag bit, and the bit
position corresponding to the privilege flag within the word (0 to 15). The
word and bit positions are provided for use with the TSX-Plus system service
call (EMT) that is used to check and modify privileges. See chapter 7 of the
TSX-Plus Reference Manual for information about this EMT.

ALLOCATE [1/14] (Allocate a device)
o Perform ALLOCATE command or issue EMT to allocate a device.

BYPASS [1/9] (Bypass device/file access restrictions)
o Allows access to .TSX and .SYS files.
o Allows access to any device (that is not allocated by someone else)
o Allows non-file-structured lookups.

DEBUG [1/13] (Use debugging facilities)
o RUN/DEBUG a program.
o SET CTRLD DEBUG.
o SET EMT TRACE.

DETACH [1/12] (Affect detached jobs)
o Start or kill detached jobs, commands or EMT s.

GETCXT [2/7] (Get file context from another job)
o Use of TSX-Plus EMT to copy the file context from another job. A job
with GETCXT privilege may gain access to the files of any other
executing job.

GROUP [2/13] (Affect jobs with same project number)
o Perform the following operations on any job which has the same project
nunber as the job issuing the command:
1. Issue KILL EMT.
2. Issue KILL command.
3. Change another job“s priority (within range allowed to changer).
4. Suspend or resume execution.

Privileges

MEMMAP [1/10] (Access memory that nay be significant to system, e.g., I/0 page)
EMT”s to peek/poke, BIS/BIC into I/0 page.

-PEEK, .POKE requests outside of RMON (low memory or I/0 page).
RUN/IOPAGE command.

EMT to map to I/0 page or back to RMON.

EMT to map to physical memory.

©O 00 Oo0O°

MESSAGE [2/10] (Named message channels)
o Use named message channels.

NFSREAD [1/2] (Non-file-structured read access)
o Allow non-file-structured lookup on directory structured device with
read-only access. (Needed to run PIP or DIR.)
0 Allows use of commands: COPY, CREATE, DELETE, DIRECTORY, PRINT, RENAME,
TYPE (Some options to these commands may require NFSWRITE privilege.)

NFSWRITE [1/1] (Non-file-structured access)
0 Allow non-file-structured lookup on directory structured device and
reads and writes.
o Allows wuse of FORMAT, INIT, SQUEEZE, COPY/DEVICE, and other DUP
functions.

CPER [1/8] (Operator)
o Set system date and time (keyboard command and EMT s).
o Perform any SET to device handler.
o BOOT, $STOP, S$SHUTDOWN commands.
o SPOOL commands (ALIGN, LOCK, FORM, SKIP, BACK, SINGLE, MULT, HOLD,
NOHOLD) . OPER privilege 1is not required for SPOOL,STATUS and
SPOOL,DELETE commands.

PSWAPM [1/7] (Change process swap mode)
o EMT to lock job in memory or reenable swapping.
o RUN/MEMLOCK command.

REALTIME [1/6] (Real—timg,EMT’s)
o .DEVICE request.
o EMT to gain exclusive system control.
o EMT to set processor priority level.
0 EMT to attach interrupts to service or completion routines.
o EMT to release an interrupt connection.

RLOCK [2/9] (Shared file record locking)
o Use shared file access control or record locking.

N

Privileges

SAME [2/12] (Affect another job with same PPN)
o Perform the following operations on any job which has the same project
and programmer number as the job issuing the command:
1. Issue KILL EMT.
2. Issue KILL command.
3. Change another job”s priority (within range allowed to changer).
4. Suspend or resume execution.

SEND [1/5] (Sending messages between jobs (not named message channels))
o SEND command or EMT to send message to another line.

SETNAME [1/4] (Change user name or password)
o SET PROCESS/NAME=name command.
o EMT to change process name.
o Change own password.

SETPRV [1/3] (Affect own privileges)
o SET own privileges beyond those authorized.

SPFUN [1/11] (Use .SPFUN EMT for directory structued devices)
o Allow .SPFUN (special function) operations to directory structured
devices. (Needed to initialize some disks.)

SUBPROCESS [2/11] (Use subprocesses)
o Ability to use subprocesses

SYSGBL [2/8] (Global regions)
o Use mnamed global regions. This privilege is also required to use
terminal display windows since they create global regions.

SYSPRV [1/0] (System privilege — System management operations)

Access .SYS and .TSX files.

INSTALL ADD/DELETE command.

SHOW INSTALL command.

RESET command.

SET CACHE, IO ABORT, CORTIM, HIPRCT, INTIOC, NUMDC, QUANx, SYSPASSWORD.
Use the TSAUTH program under TSX-Plus.

O 0o o0 o0

TERMINAL [2/15] (Terminal and CL commands)
o Perform any SET TT to line other than your own.
Make permanent SET to your own line.
Change line speed, parity, bits—-per—character, SYSPASSWORD control.
Issue EMT to change line speed, parity, bits—-per-character.
Perform any SET CL command.
Issue EMT to assign CL unit to a line.
Issue SET HOST command to cross connect a time-sharing line with a CL
line.

O 00 OO0 O©

Privileges

UP1 [2/0] (User—defined privilege 1)
UP2 [2/1] (User-defined privilege 2)
UP3 [2/2] (User—defined privilege 3)
UP4 [2/3] (User—defined privilege 4)

WORLD [2/14] (Affect any job)
o Perform the following operations on any job:
1. Issue KILL EMT.
2. Issue KILL command.
3. Change another job”s priority (within range allowed to changer).
4. Suspend or resume execution.
o Affect detached jobs started automatically by system initialization
(jobs specified by DETACH command in TSGEN).

The four user-defined privileges, UPl, UP2, UP3, UP4, have no effect on system
operation but are maintained by the system in the same fashion as the other
privilege flags. User programs may check the setting of these privileges and
base their operation on them.

1.2 Setting job privileges

At any time during the execution of a job, there are three sets of privilege
flags associated with the job:

1. Authorized privileges.
2. Set privileges.
3. Current privileges.

The authorized privileges are those privileges for which the job is authorized.
These are set by TSAUTH when an account is authorized, or by the SET
PROC/PRIVILEGES/AUTHORIZED command.

The set privileges are those privileges which have been specified by use of the
SET PROCESS command or the TSX-Plus EMT for setting privileges. Unless the job
has SETPRV privilege, the set privileges will not exceed the authorized
privileges.

The current privileges are the privileges currently in effect for the job.
These privileges are selected as each program is started based on the set
privileges and program-dependent privilege specifications for installed
programs. A TSX-Plus EMT is available to allow running programs to change the
current privileges.

Nan

Privileges

The SET PROCESS keyboard command can be used to alter job privileges as well as
other job characteristics. The form of this command is:

SET PROCESS [/PRIORITY=value] [/IDENTIFICATION=value]
[/SUSPEND] [/RESUME]
[/NAME=string]
[/PRIVILEGES=(privileges)[/AUTHORIZED]]

See the TSX-Plus Reference Manual for information about using the SET PROCESS
command for changing process parameters other than the privilege flags.

The /PRIVILEGES qualifier is used to specify a 1list of privileges. If more
than one privilege is being specified the privilege keywords are enclosed in
parentheses and separated by commas. If only a single privilege keyword is
specified, the parentheses may be omitted. The word "NO" may be concatenated
with a privilege keyword to cause the privilege to be removed from the job.
For example, the following command grants the ALLOCATE privilege and removes
the SUBPROCESS privilege:

SET PROCESS/PRIVILEGES=(ALLOCATE,NOSUBPROCESS)

In addition to the privilege keywords and their NO-complements, the following
special privilege keywords may be specified:

ALL —— All privileges

NONE ~= No privileges

STANDARD -- Standard privileges (ALLOCATE, DEBUG, DETACH, SPFUN, SEND,
SETNAME, NFSREAD, NFSWRITE, SAME, SUBPROCESS, MESSAGE, RLOCK).

These special keywords may be used in conjunction with other keywords to select
sets of privileges. When this is done the special keyword (ALL, NONE, or
STANDARD) should be specified as the first privilege followed by additional
privilege keywords. For example, the following command grants all privileges
except REALTIME, SETPRV, and MEMMAP:

SET PROC/PRIV=(ALL,NOREALTIME,NOSETPRV,NOMEMMAP)
The following command grants the standard privileges plus the OPER privilege:

SET PROC/PRIV=(STANDARD,OPER)

The /AUTHORIZED qualifier can be used in conjunction with the /PRIVILEGE
qualifier to cause the authorized privilege flags to be affected as well as the
set and current privileges. If the /AUTHORIZED qualifier is not specified,
only the set and current privileges are affected. The following command sets
the standard privileges as the authorized, set, and current privileges for the
job:

SET PROC/PRIV=STANDARD/AUTHORIZED

Privileges

Note that this command affects the authorized privileges for the job only
during the current job session. .

The SET PROCESS command can always be used to remove a privilege from the
authorized, set, and current privileges for the job. Privileges can only be
granted for a job if the job is authorized for the privileges or if the job has
SETPRV privilege which allows the job to override the authorized privileges and
set any privilege.

The SHOW PRIVILEGE keyboard command can be used to display the authorized and
current privileges for the job.

1.3 Initial job privileges

If the LOGON facility is used, a set of privileges may be specified for each
account. See chapter 2 of this manual for information about authorizing
accounts and setting privileges.

When a job is initiated it is authorized for all privileges. Privileges may be
restricted by either of two methods: (1) the SET PROCESS/PRIV/AUTHORIZED
command, or (2) the LOGON program. If the LOGON program is being used, a
command of the form R LOGON should appear in the start-up command file for the
line. When the LOGON program executes, it will set the privileges for the job
based on privileges specified for the account by the TSAUTH program. If the
LOGON program is not used, the job will have full privilege unless a SET
PROC/PRIV/AUTHORIZED command is placed in the start—up command file.

A TSX-Plus EMT is available to allow running programs to determine the
privilege sets for the job and to change privileges. See chapter 7 of the
TSX-Plus Reference Manual for information about this EMT.

2. ACCOUNT AUTHORIZATION PROGRAM

TSAUTH, the TSX-Plus account authorization program, is used to authorize
accounts for access to the system when the LOGON facility is used. It is also
used to display the use accounting statistics that are collected by the LOGON
facility.

A user must have SYSPRV privilege to run TSAUTH under TSX-Plus. However,
TSAUTH may also be run directly under RT-11 without TSX-Plus. In a hostile
environment it might be desirable to restrict access to the TSX-Plus distri-
bution media and to keep the TSAUTH program on a removable medium rather than
keeping it on the system disk. TSAUTH creates a file on SY named "ACCESS.TSX".
Note that SYSPRV or BYPASS privilege is required to create or execute any file
with the extension "TSX".

Whenever TSAUTH is started it checks to see if an account authorization file
already exists. If not it prints the message:

Cannot open account authorization file "SY:ACCESS.TSX"
Do you want to initialize a new authorization file?

If you respond "YES" (or "Y") to this question it will ask you how many
accounts you want to reserve room for in the file. Respond by entering the
maximum number of accounts that you anticipate ever needing to have authorized
at any one time. As old accounts are deauthorized, file space is recovered
that can be used for new accounts. Note however that the only way to enlarge
the ACCESS file is to delete it and build a new, larger onme from scratch. Do
not underestimate the potential number of accounts desired.

2.1 Account entry information

Each entry in the account authorization file contains a user name, a project-
programmer number, a password, the name of a start-up command file, priority
and privilege information, and resource usage statistics.

The user name is a string of up to 12 characters which is used when logging
onto the system; it is also used with TSAUTH commands to identify an account.
Each account must have a unique user name.

The project-programmer number is a pair of numbers. The first number is the
project number, the second number is the programmer number. The project-
programmer number is written with a comma separating the numbers. The project
and programmer numbers must be integer values in the range 1 to 65534.
Normally the user name is used to log on and identify and account and the
project—programmer number has little significance (TSAUTH will automatically
assign a project-programmer number if one is not specified). However, if a job
has GROUP privilege, it can perform certain operations on other jobs with the
sane project number (such as aborting the job), hence the same project number
should not be assigned to two jobs that have GROUP privilege unless this type
of access is desired. TSAUTH allows a wildcard character ("*") to be specified
for the project and/or programmer number with some of its commands, so it is is
desirable to assign a common project or programmer number to accounts that will
be managed as a group. Each account must have a unique project—programmer
number combination.

-9-

Account Authorization

A password is a string of 1 to 7 characters that is used as a security
verification when logging onto the system. Accounts are not required to have
passwords (although it is strongly recommended that they do). If an account
does not have an assigned password, the user may log on by specifying only the
user name for the account. The account password is normally assigned when the
account is authorized and may be changed with the TSAUTH MODIFY command. If an
account has SETNAME privilege, the user may change the password at the time
that they log on. For security reasons, TSAUTH will not display account
passwords. Hence, if a user forgets the password the correct procedure is to
use the TSAUTH MODIFY command to assign a new password. Passwords do not need
to be unique.

A start-up command file is an indirect command file that is executed when an
account logs on. There are two types of start-up command file. One type of
start-up command file is associated with each time~sharing line. This command
file is executed whenever the line is initialized (i.e., at system startup time
if the line is specified to be automatically started, or when carriage return
is received for lines that are not automatically started). This line-dependent
start—up command file may contain a "R LOGON" command to cause the logon
program to be run when the line is initiated. The second type of start-up
command file is associated with each account. This type of command file is
executed when the account logs on. Thus the first type of start-up command
file executes from the time the line is initiated up to and including the
execution of the LOGON program. The second type of start-up command file is
executed following the LOGON program and is determined by which account logs
on. The line-dependent start-up command file is specified in TSGEN within the
line definition block. The account-dependent start-up command file is
specified with TSAUTH. The start-up command file specification may be up to 15
characters long ‘and may contain a device name as well as a file name and
extension. Accounts are not required to have associated start-up files and
start-up file specifications need not be unique between accounts.

The maximum execution priority limits the execution priority that may be used
by the account. This may be from 1 to 127. . The default execution priority
(and default maximum execution priority) is 50.

Account privileges determine which system services are available to the
account. Privileges are specified as a set of privilege names which may be on
(privilege granted) or off (privilege denied). Chapter 1 provides complete
information about each privilege; a summary of privilege keyword names and
functions is shown below:

-10-

N

Account Authorization

Privilege Function

ALLOCATE Allocate a device

BYPASS Bypass device/file access restrictions

DEBUG Use system debugging facilities

DETACH Start or kill detached jobs

GETCXT Get file context from another job

GROUP Affect other jobs with the same project number
MEMMAP Access system memory (e.g., I/0 page)

MESSAGE Send and receive messages

NFSREAD Perform non-file-structured reads

NFSWRITE Perform non—-file-structured writes

OPER Operator functions (e.g., set time, spool control)
PSWAPM Change process swap mode (i.e., lock in memory)
REALTIME Real-time system services (e.g., interrupt connect)
RLOCK Shared file record locking and access control

SAME Affect another job with same project—programmer number
SEND Send a message to another terminal

SETNAME Change job name or password

SETPRV Set privileges beyond those authorized

SPFUN Allow .SPFUN operations to directory structured devices
SUBPROCESS Use subprocesses (virtual lines)

SYSGBL Use named global regions and display windows

SYSPRV System manager functions (e.g., authorize accounts)
TERMINAL Terminal and CL line control (e.g., set line speed)
UpPl User—defined privilege 1

UP2 User—-defined privilege 2

UP3 User—defined privilege 3

UP4 User—defined privilege 4

WORLD Affect any job

14
Most sites find it convenient to group accounts into three categories based on
the type of privileges they require: (1) ordinary accounts which don”t need
any special privileges; (2) operator accounts used by people who run the
computer but don”t need to authorize accounts or tune the system; ‘and (3)
system manager accounts. The following sets of privileges are recommended for

each of these account types:

Ordinary accounts: ALLOCATE, DEBUG, DETACH, SPFUN, SEND, SETNAME, NFSREAD,

NFSWRITE, SAME, SUBPROCESS, MESSAGE, RLOCK.
Operator accounts: Same as ordinary accounts plus OPER, TERMINAL, WORLD.

System manager accounts: All privileges.

Ordinary and operator accounts must also be given SYSGBL privilege if the
process windowing facility is to be used.

-11-

Account Authorization

2.2 Command summary

The following commands may be used with the TSAUTH program:

Command Function

AUTHORIZE Authorize an account

MODIFY Modify information associated with an account
KILL Deauthorize an account

LIST List information about accounts

USAGE List account usage statistics

CHARGE Create a charge file

RESET Reset account usage statistics

EXIT Exit from the TSAUTH program

TSAUTH commands begin with a keyword (AUTHORIZE, MODIFY, KILL, etc.) followed
(in most cases) by the user name associated with the account. Commands may be
continued by typing a minus sign ("-") as the last character on the line to be
continued and then typing the continuation of the command on the next line.

2.3 Authorizing an account

The form of the command used to authorize a new account is:

AUTHORIZE username [/qualifiers...]

where "username"” is the account user name which may be up to 12 characters
long, and "qualifiers"” include the following specifications:

/PPN=project,programmer specifies the project—-programmer number to be associa-
ted with the account. The first number of the pair is the project number, the
second number is the programmer number. If a PPN is specified, it must be
unique. If the /PPN qualifier is not specified, TSAUTH will automatically
assign a unique PPN fog,the account. It does this by assigning project and
programmer numbers which are one larger than the current largest PPN of any
authorized account. The automatically generated numbers are never smaller than
100. If you wish to specify either the project or the programmer number but
allow TSAUTH to automatically assign the other number, you may specify an
asterisk ("*") for the number which is to be assigned by TSAUTH and a numeric
value for the number you wish to specify.

/PASSWORD=string specifies the password for the account. The password string
may be up to 7 characters long. If the /PASSWORD qualifier is omitted, no
password will be required for the account to log on. If the /PASSWORD
qualifier is specified without an equal sign or string, TSAUTH prompts for the
password and accepts it without echoing it to the terminal. This is useful it
you want to prevent the password from being printed on a hardcopy terminal
listing.

-12~-

N

N

Account Authorization

/START=file specifies the logon start-up file specification. The file
specification may be up to 15 characters long. If the /START qualifier is
omitted, no start—up command file will be executed when the account logs on.

/PRIORITY=value specifies the maximum authorized execution priority. If
specified, the value must be in the range 1 to 127. If this qualifier is not
specified, the maximum priority for the job will be set to 50.

/PRIVILEGE=privilege-list specifies the privileges which the job is to have.
If the privilege list consists of more than one keyword, the keywords must be
enclosed in parentheses and separated by commas. The parentheses may be
omitted if a single privilege keyword is specified. The special privilege
keywords ALL, NONE, and STANDARD may be used. The standard privileges are:
ALLOCATE, DEBUG, DETACH, SPFUN, SEND, SETNAME, NFSREAD, NFSWRITE, SAME,
SUBPROCESS, MESSAGE, RLOCK. Initially the privileges are set to STANDARD. The
privileges specified in the privilege list modify the standard privileges. For
example, the specification /PRIVILEGE=(NOSUBPROCESS,SYSPRV) authorizes the
account with the standard privileges but without the SUBPROCESS privilege and
with the SYSPRV privilege. The specification
PRIVILEGE=(NONE, SPFUN,NFSREAD,NFSWRITE) cancels all of the standard privileges
and grants only SPFUN, NFSREAD, and NFSWRITE. If the /PRIVILEGE qualifier is
onitted, the standard privileges are assigned to the account.

Example:

The following account authorizes an account with user name "SALES"; project-
programmer 20,34; password "ENGLAND"; maximum execution priority 60; standard
privileges plus SYSGBL; start—up command file "DLO:STD.TSX":

AUTHORIZE SALES/PPN=20,34/PASSWORD=ENGLAND/PRIORITY=60-
/PRIVILEGE=SYSGBL/START=DLO: STD.TSX

The following command authorizes an account with the user name "ACCT-MANAGER",
password "SECRET", standard privileges plus SYSPRV, and a start-up command file
named "DLO:MSTR.TSX". The default maximum execution priority (50) is used and
TSAUTH automatically assigns a project—programmer number.

AUTHORIZE ACCT-MANAGER/PASSWORD=SECRET/PRIV=SYSPRV-—
/START=DLO:MSTR .TSX

If the AUTHORIZE command is used without specifying any qualifiers, TSAUTH will
prompt for each qualifier. When operating in this mode, if you press return
without entering anything in response to the PPN (project programmer number)
prompt, TSAUTH automatically generates and assigns a project programmer number.

For example, the following operation authorizes an account named "OPERATOR";

project-programmer number 1,1; password "OP4376"; start-up command file
"DLO:OPR.TSX"; and operator privilege.

-1 3_

Account Authorization

AUTHORIZE OPERATOR

PPN:1,1

Password:0P4376 [this is not echoed]
Start—up file:DLO:OPR.TSX

Maximum execution priority:
Privileges:0PER, TERMINAL,WORLD

2.4 Modifying an account

The form of the command used to modify parameters for an account is:

MODIFY {username | project,programmer}/qualifiers...

Either a user name or a project programmer number may be specified with the
MODIFY command. If a project programmer number is specified, a wildcard
character ("#*") may be specified for either or both of the numbers causing the
. modification to be applied to multiple accounts. For example, the following
command grants SUBPROCESS privilege to all accounts with project number 43:

" MODIFY 43,*/PRIV=SUBPROCESS

‘The qualifiers which may be used with the MODIFY command are: /PASSWORD,
/PRIVILEGE, /PRIORITY, and /START. These qualifiers have the same form as
specified with the AUTHORIZE command. The /PRIVILEGE qualifier adds or removes
privileges relative to the privileges the account has at the time that the
MODIFY command is executed, rather than adding or removing privileges from the
standard set as is the case with the AUTHORIZE command. An account must be
reauthorized to change either the user name or the project programmer number.
The user of the account that is being modified, if logged on, must log off and
back on before the modifications will take effect.

For example, the following command modifies the account with the user name
MANAGER to add BYPASS privilege and change the password to SPIRIT:

MODIFY MANAGER/PRIVﬁﬁYPASS/PASSWORD=SPIRIT
As with the AUTHORIZE command, if the /PASSWORD qualifier is specified without
an equal sign and string, TSAUTH will prompt for the password and accept it

without echo.

2.5 Deauthorizing an account

The KILL command is used to deauthorize an account. The form of this command
is:

KILL {username | project,programmer}

Either a user name or a project programmer number may be specified. A wildcard
character ("*") may be substituted for either the project number, the pro-
grammer number, or both.

-14-

N

Account Authorization

For example, the following command deauthorizes the account with the user name
JONES:

KILL JONES
The following command deauthorizes all accounts with project number of 120:
KILL 120,*

2.6 Listing information about accounts

The LIST command is used to list information about accounts. The form of this
command is:

LIST {username | project,programmer}

Either a user name or a project programmer number may be specified.' A wildcard
character ("*") may be substituted for either the project number, the pro-
grammer number, or both.

For example, the following command lists information about the account with
user name OPERATOR:

LIST OPERATOR

The following command lists information about all accounts with project number
1:

LIST 1,%*

2.7 Listing account usage statistics

The USAGE command is used to list the account usage statistics which consist of
the number of sessions, the connect time, and the CPU time. The form of this
command is:

USAGE {username | project,programmer}

Either a user name or a project programmer number may be specified. A wildcard
character ("*") may be substituted for either the project number, the pro-
grammer number, or both.

2.8 Creating a charge information file

The CHARGE command causes TSAUTH to create a file of usage information. The
file is named "DK:CHARGE.TSX"; it contains one record for each account; each
record is terminated with a carriage return and line feed.

-15-

Account Authorization

The format of a charge record is as follows:

Columns Contents

1 (blank)
2 - 6 Project number
7 (blank)
8 - 12 Programmer number
13 (blank)
14 - 18 Number of logons
19 (blank)
20 - 24 DNumber of minutes of connect time
25 (blank)
26 - 33 CPU time used (0.1 second units)
34 (blank)

35 - 46 User-name (left justified and padded with blanks)

47 (carriage return)
48 (line feed)

2.9 Resetting account usage statistics

The RESET command resets the account usage statistics (number of sessions,
connect time, and CPU time) to zero for all or a selected set of accounts. The

form of the command is:

RESET {username | project,programmer}

Either a user name or a project programmer number may be specified. A wildcard
character ("*") may be substituted for either the project number, the pro-
grammer number, or both.

2.10 Exiting from the TSAUTH program

The EXIT command (or control-C) is used to exit from the TSAUTH program. The
form of the EXIT command is:

EXIT

2.11 Use of indirect files within commands

A portion of a command line may be drawn from an external file by typing @file
at the position in the command where the contents of the file are to be
inserted into the command line. The default extension for these files is TSX.
For example, the following command uses parameters in a file named STUDNT as

part of an AUTHORIZE command:

AUTHORIZE JONES @STUDNT

-16-

Nees

Account Authorization

The following command draws the privilege list from a file named CLERK and in
addition negates the SUBPROCESS privilege:

AUTHORIZE FRANK/PRIV=(@CLERK,NOSUBPROCESS)

More than one indirect file reference may occur within a command but the
indirect files may not be nested.

17.

S

18

3. SYSTEM AND FILE ACCESS SECURITY

TSX-Plus provides a number of security options that allow the site manager to
control system resources to time-sharing users. The system manager can control
who may log onto the system, which files or devices each user may access and
can also lock users to particular programs. The following facilities can be
used to control system access: o '

1. System password.

2. Start-up command files.

3. Log—off command files.

4. The RUN/LOCK switch.

5. The LOGON program with log—on command files.

6. The ACCESS command.

7. The SET MAXPRIORITY command.

8. Installed programs.

3.1 System password feature

A "system password" facility is available to provide additional security on
dial-up lines in addition to the LOGON program. System password checking can
be enabled on a line-by-line basis. If system password checking is enable for
a line, the user is prompted with an exclamation point ("!") when the line is
initiated (i.e., when carriage return is pressed). After the correct password
is entered, the normal logon sequence begins which prints the system greeting
message and runs the start-up command file (which typically runs the LOGON
program). The idea is to force the user to provide a password before dis-
playing the logon greeting which identifies the site and the nature of the
system.

To enable system password checking, specify the system password using the SYSPS
macro in TSGEN, and include the $SYSPS flag with the FLAGS macro within the
line definition blocks for all lines that are to perform system password
checking. The system password may be up to 20 characters long and may contain
spaces. The same system password is used for all lines that perform password
checking.

When a line that performs system password checking is initialized, the system
does autobaud speed selection (if required) and then prints an exclamation
point as the prompt for the system password. The password is not echoed as it
is entered. Terminate the password by pressing carriage return. If the
password 1is correctly entered, the system will print the standard TSX-Plus
greeting message and perform the normal line initiation sequence. If an
incorrect password is entered, no error message is printed but the exclamation
point is redisplayed. If the password is entered incorrectly a second time,

19

System and File Security

the line is hung up. The password must be entered within the time limit
specified by the OFFTIM sysgen parameter or the system will hang up.

A keyboard command of the form:

SET SYSPASSWORD password
can be used to change the password for the running system. SYSPRV privilege is
required to use this command; the change only remains in effect until the
system is rebooted. The TSXMOD program can be used to change the system
password in the TSX.SAV file.
The system password can be displayed by use of the following command:

SHOW SYSPASSWORD

SYSPRV privilege is required to use this command.

System password checking may be enabled or disabled for individual lines by use
of the following command:

SET TERMINAL n [NO]SYSPASSWORD
where n is the terminal line number. TERMINAL privilege is required to issue

this command. The TSXMOD program can also be used to set or reset this flag
for lines.

3.2 Start-up command files

In the system generation, a unique start-up command file which executes each
time the 1line is initialized may be specified for each of the physical
time-sharing lines. The command file name is defined using the CMDFIL macro
within a line definition block in TSGEN. (See the TSX-Plus Installation Guide
for information on the CMDFIL macro.) Different command file names may be
specified for each line and any or all lines may be generated without these
start—up command files.

When a line has an associated start-up command file, the command file is
executed each time the 1line is initialized (e.g., when the user presses
carriage return on an inactive line). Start-up command files are unique from
other command files in that their execution cannot be aborted by typing
control-C. This allows the system manager to place any desired commands in the
start-up command file to be executed to completion regardless of the actions of
a time-sharing user. However, if for some reason the command file abnormally
terminates, the line may be granted full access to the system without proper
initialization. This can be avoided by disabling command file aborts, except
in the most serious circumstances, by setting the error abort level as the
first command. This is expecially important for lines started with complex
command files and for dial-up lines. For example:

-20-

System and File Security

SET ERROR NONE

R/LOCK LOGON
OFF

This would prevent the line from accessing the system even if the LOGON program
was not found.

A start-up command file may contain any keyboard command and can run one or
more programs. Control-C resumes its normal function when the start—up command
file is terminated or a program started by it requests input from the terminal.
It is suggested that start-up command files be given the extension "TSX" to
prevent their being tampered with by users who do not have system operator
(SYSPRV) privilege or bypass access (BYPASS) restrictions (see below). If
"TSX" is used as the file extension, it must be specified with the file name in
the CMDFIL macro since the default extension is "COM". The default device is
"SY:".

The listing of a start-up command file can be suppressed by placing the two
character sequence "“(" at the front of the command file. See the chapter on
Command Files in the TSX-Plus Reference Manual for more information on command
file control characters.

Subprocesses (previously called virtual lines) are started by typing control-W
followed by a digit which selects the subprocess. When a subprocess is
initiated, it "inherits” a large part of the process context from the primary
process but does not ordinarily execute any start-up command file. If you wish
to have a start-up command file executed when a subprocess is started, place a
command of the following form in the start-up command file for the primary
process:

SET SUBPROCESS/FILE=file

where file is the file specification for the start-up command file that is to
be executed when any subprocesses are initiated by the primary process. TFor
example, the following command specifies that a file named "SY:VSTART.TSX" is
to be executed each time a subprocess is started:

SET SUBPROCESS/FILE=SY:VSTART.TSX

The SET SUBPROCESS/FILE command is valid only within a start-up command file.

-21-

System and File Security

3.3 Log-off command files

It is possible to define a command file that is to be executed when a job logs
off. To declare a log-off command file, place a command of the following form
in the start-up command file for the job:

SET LOGOFF/FILE=name

where "name” is the file specification for the log-off command file. The SET
LOGOFF command is valid only within the start-up command file for the job. The
log-off command file is executed whenever the job logs off. Be careful with
what you put in a log-off command file since the execution of a log—off command
file cannot be aborted by typing control-C. The listing of a log-off command
file can be suppressed by placing ""(" as the first two characters of the file.

3.4 The RUN/LOCK switch

The "R" and "RUN" commands accept a "/LOCK" switch that causes the program
being run to be "locked” to the time-sharing line. A locked program executes
in the normal fashion, and may chain to other programs (which are also locked).
However, if a locked program exits or is aborted by typing control-C the line
is automatically logged off. Note that one can prevent an ongoing program from
being aborted by control-C by doing a .SCCA EMT or by defining control-C as and
activation character using the TSX-Plus program controlled terminal options
(see the TSX-Plus Reference Manual chapter on Terminal Control for information
on defining activation characters).

In a situation in which a time-sharing line is to be automatically locked to a
program when the line is started, simply build a start—up command file for the
line and include as the last start-up entry in the file a "RUN/LOCK program"
command.

3.5 Use of the LOGON facility

The TSX-Plus LOGON facility provides access security to the system by requiring
users to enter a valid project—programmer number or user name and password
before granting access to the system. In addition, the LOGON facility allows
the system to grant different privileges to each user and provides system use
accounting on a per user basis.

To wuse the LOGON facility the system manager must first use the account
authorization program (see the chapter titled Account Authorization Program) to
create an account authorization file. This file specifies the valid project-
programmer numbers, user names, passwords, user start-up command file, and
privileges. He must then generate a TSX-Plus system and specify a line-by-line
start-up command file to be executed for each line that is to be forced to
logon. The suggested name for this start-up command file is "SY:LOGON.TSX".
This command file may contain any desired keyboard commands but should start by
disabling error aborts, should lock the job to the LOGON program, and should
end by logging the job off. In this fashion, the job will not be able to gain

-22-

System and File Security

access to the system even if the LOGON program is missing or some other command
fails. For example:

SET ERROR NONE

R/LOCK LOGON
OFF

This command causes the LOGON program to be started and "locked" to the line so
that the user cannot run any other program until the logon has been success-
fully completed. Note that the logon program (LOGON.SAV) must be present on
the system device. The OFF command will only be executed if the LOGON program
cannot be run.

Note that for each job there may be two start—-up command files: the first is
specified with the CMDFIL macro in TSGEN and is associated with a physical
time-sharing line; the second is associated with a particular user (account
name, project-programmer number) and is invoked through the LOGON program and
account authorization system.

To prevent listing the start-up command file, the character sequence "~(" may
be placed at the beginning of the command file. Thus, the logon start—up file
for a physical time-sharing line might contain:

~(SET ERROR NONE
R/LOCK LOGON
OFF

A SET LOGOFF command can be placed in the start—up command file to declare the
name of a command file to be executed when the job logs off.

3.6 The ACCESS command

The ACCESS keyboard command is used to limit access to devices and files. The
ACCESS command is valid only if executed as part of a start-up command file.

The form of the ACCESS command is:
ACCESS dev:file.ext/switch,dev:file.ext/switch,...

Up to twenty-five "dev:file.ext" expressions may be specified. Each logical
subset disk mounted also counts toward the limit of entries in the access
table.

If no ACCESS command is executed, the time-sharing user is allowed to access
all devices and files on the system (with the exception of SYS and TSX
extensions - see SYSPRV and BYPASS privileges). If an ACCESS command is
executed, the user is restricted to accessing only the devices and files that
are specified with the command.

-23-

System and File Security

The "dev:file.ext" expression has three items: the device name, the file name
and the extension. The "*" (wildcard) character may be substituted for any or
all of these three items. 1In this case the wildcard will allow access to any
name that occurs in the wildcarded position. For example, "RK1:*.ABC" will
allow access to any file on RKl that has the extension "ABC". Consider the
following ACCESS command:

ACCESS RKO:* .ABC,RKO:*.BAK,RK1:*.% LP:

This allows access to any files on RKO that have the extension "ABC" or "BAK";
it also allows access to all files on RKl and LP. Note that the LP specifi-
cation is needed if the user is to be allowed to access the line printer.
Access privilege is needed to read, create delete, or rename a file. A device
can only be initialized (directory cleared) if full access to the device and
non-file-structured write privilege (NFSWRITE) are granted.

The ACCESS facility works by matching the user-specified device, file and
extension names with those that were specified on the ACCESS command. This
matching is done after any ASSIGNS of logical to physical device names are
carried out.

Since the utility programs PIP, DUP and DIR directly access device directories,
they exhibit minor deviations from expected access protection behavior. If
access 1is granted to any files on a device and non-file-structured read
privilege (NFSREAD) is granted, then DIR will be able to obtain the device
directory. In order for PIP and DUP to access an individual file, the job must
have at least /READ access to the full device and non—flle-structured read
privilege (NFSREAD), even if access has been granted to the specific file of
interest. These deviations affect the DIR, COPY, TYPE, and PRINT commands
among others.

The "/READ" switch may be specified with a device-file name to restrict access
to the device-file to be read-only. For example, the following command allows

full access to RKl but read-only access to RKO.
ACCESS RK1:,RKO:/READ

Remember that the common utility programs, such as PIP and DIR, are required by
most users and consequently at least SY:*.SAV/READ access is usually desirable.
Also, access to system library files (SY:SYSLIB.OBJ, SY:FORLIB.OBJ) and the
system MACRO 1library file (SY:SYSMAC.SML) may be necessary for progranm
development. Because of the limited number of ACCESS entries that may be made
(25 for each job), it is not advisable to enumerate each specific file to which
access is desired, but rather to cluster groups of files on the system disk or
on logical subset disks. For example, the following ACCESS command could be
used to grant full access to DLl and limited access to the system disk:

ACCESS DL1:,SY:*.SAV/READ,SY:SYSLIB.OBJ/READ, SY: SYSMAC.SML/READ

—24~

System and File Security

The ACCESS and MOUNT commands can be used together to control access to logical
subset disks. To control which logical disks are available to a user, specify
the names of the files that contain the logical disks with the ACCESS command
in the startup command file and then use MOUNT commands after the ACCESS

command to associate logical disk units with the files. This will allow the
user to access all files within the logical disk but will restrict access to
other logical disks or files. For example, consider the following commands
which could be placed in a startup command file: ‘ ‘ '

ACCESS SY:/READ,DLO:CLASS1.DSK,DLO:CLASS2.DSK/READ
MOUNT LD1 DLO:CLASS1
MOUNT LD2 DLO:CLASS2

After executing this startup command file, the user will have read only access
to all files on the system disk ("SY:"), read-write access to LDl which is
associated with the file DLO:CLASS1.DSK, and read-only access to LD2 which is
associated with DLO:CLASS2.DSK. This will permit the user to initialize LD1
and create, edit, and delete files on LDl. The user may also create nested
logical disks within LDl1. Files on LD2 may be accessed for reading only.

3.7 The SET MAXPRIORITY command

TSX-Plus users can assign execution priority values to their jobs by use of the
SET PRIORITY command and a TSX-Plus EMT. The maximum priority that a user is
allowed can be controlled by use of either the TSAUTH program (in conjunction
with the LOGON program), or the SET MAXPRIORITY command. Normally the TSAUTH
program would be used to assigned maximum priorities if the LOGON facility is
being used. The SET MAXPRIORITY command is intended primarily in situations
where the LOGON facility is not being used but it is still desirable to limit
the maximum authorized priority. In these cases the SET MAXPRIORITY command
can be placed in the start-up command file for the line.

The form of the SET MAXPRIORITY command is:

SET MAXPRIORITY value
where "value"” is in the range O to 127. The SET MAXPRIORITY command may only
lower the maximum authorized priority value for the job, it may not increase

it. Thus the system manager may restrict job priority by placing a SET
MAXPRIORITY command in the start—-up command file for a line.

3.8 INSTALL command

Programs may be "installed” in the system to allow special attributes and
privileges to be invoked when the program is run. The form of the INSTALL

command used to add a program to the install table is:

INSTALL ADD program[/attribute...][/PRIV=(privileges)]

-25-

System and File Security

Where program is the file specification for the program being installed,
attribute is one or more of the attributes listed below, and privileges is a
Iist of privilege keywords which specifies which privileges are to be temporar-
ily granted or denied while the program is executing. If a program is already
in the install table, the new specifications replace the existing ones.

The device name specified for the program (or DK by default) is translated to a
physical device name at the time the INSTALL command is executed. Similarly
the physical device name for a program being started is used when the install
table is searched at program start-up time. Installed programs must reside on
physical disks, and may not be located on logical disks.

The INSTALL command does not open the SAV file of the program being installed
and no error will occur if installed programs are not actually present on the
system.

The following programs are automatically installed when TSX-Plus is started:
IND, KED, KEX, K52, LOGON, PATCH, SETUP, SYSMON, TECO, TRANSF, TSAUTH, VTCOM.

' These programs should be located on the disk from which the system was booted.
Because of the installation of SYSMON, it is no longer required to have system
privilege to execute SYSMON. The INSTALL command can be used to alter the

standard installed programs.

One entry is reserved in the install table for each of the programs that is
automatically installed by TSX-Plus plus the number of entries specified by the
NUIP sysgen parameter.

The form of the INSTALL command used to remove a program from the install table
is:

INSTALL DELETE program

where program is the file specification for the program whose entry is to be
removed.

The SHOW INSTALL keyboard command may be used to list information about all
installed programs.

SYSPRV privilege is required to use the INSTALL ADD/DELETE command or the SHOW
INSTALL command.

The following attributes may be specified for installed programs:

Attribute Meaning

BYPASN (Bypass logical assignments)
Bypass all logical device assignments. DK and SY will be
directed to the system disk (disk from which RT-11 was

booted).

26

. v

System and File Security

HIGH (High-efficiency mode)
High-efficiency terminal mode is selected.

TOPAGE (I/0 page access)
I/0 page is mapped into PAR 7 of program virtual address
space.

LOCK (Lock program to job)

Program is "locked” to job so that job is logged off if
program exits.

MEMLOCK (Lock program in memory)
Program is locked in low memory while it is running.

NONINTERACTIVE (non-interactive execution)
Program is run with non-interactive execution priority.

NOWAIT (Non-wait terminal I/0)
Program is allowed to execute non-wait .TTYIN and .TTOUTR
operations (bit 6 must also be set in the job status word to
enable non-wait terminal I/0).

SINGLECHAR (single-character activation)
Program is enabled to perform single-character activation (bit
12 must also be set in the job status word).

TRANSPARENT (transparent terminal output)
Terminal output is processed in "transparent” mode where
control characters such as the TSX-Plus "leadin"” character are
not interpreted by the system.

Attributes and privileges specified for installed programs take effect when the
program is started (either by use of a R or RUN command or by chaining to the
program) and remain in effect until the program exits or chains to another
program at which time the program attributes are cleared and the current
privileges are reset to the set privileges.

The /PRIVILEGE qualifier may be used to temporarily grant or deny any privilege
including privileges for which the job is not authorized. For example, the
following INSTALL command installs a program named CONTRL on DL1 which is to
have PAR 7 mapped to the I/O page while the program is running. MEMMAP
privilege is granted while the program is running but DEBUG privilege is denied
to prevent a user from triggering a breakpoint while the program is running
with access to the I/0 page:

INSTALL ADD DL1:CONTRL/IOPAGE/PRIV=(MEMMAP, NODEBUG)
Note in this example, MEMMAP privilege is required to run this program since

the /IOPAGE attribute was specified. If the MEMMAP privilege had not been
specified when the program was installed, only those users who are authorized

-27-

System and File Security

for MEMMAP privilege would be able to run this program. By installing the
program with MEMMAP privilege, users who are not authorized for MEMMAP
privilege are temporarily granted the privilege to enable them to run the
program.

-28-

4. DEVICE HANDLERS

TSX-Plus supports the following RT-11 device handlers: CT, CR, DD, DL, DM, DP,
ps, DT, DU, DX, DY, LP, LS, MM, MS, MT, NL, PC, RF, and RK. In addition, the
IEEE GPIB version 2.1 IB device driver is supported. The logical subset disk
(LD) and single line editor (SL) are implemented in TSX-Plus as overlay regions
and do not require device handlers. The virtual memory handler (VM.TSX) is
proprietary and unique to TSX-Plus. TSX-Plus also supports the communication
line (CL) device handler.

The following RT-11 device handlers are unsupported under TSX-Plus: BA
(resident batch handler), EL (error logging pseudohandler), and PD
(PDT-11/130/150 handler). Also the IBSRQ function of the GPIB IEEE IB handler
is unsupported. In addition, TSX-Plus supports the functionality (but not the
RT-11 device handler implementation) for logical subset disks (LD), the single
line editor (SL), and the virtual memory device (VM).

4.1 Device handler extensions and restrictions

TSX-Plus requires device handlers which are written to support a memory
management RT-11 XM environment. Error logging is mnot supported wunder
TSX-Plus. See the RT-11 Software Support Manual for details on device
handlers. Device handlers must follow the rules for RT-11 XM device handlers
in order to function with TSX-Plus.

4.1.1 RT-11 version number checking

TSX-Plus will not install device handlers which were issued by Digital
subsequent to the version of RT-11 under which TSX-Plus is being started. In
other words, you must upgrade to the appropriate version of RT-11 in order to
be able to use the newer device handlers with TSX-Plus. Specifically, the
following device handlers minimally require the indicated version of RT-11:

Device RT-11 version

DU 5.00
XL 5.01

In addition to the RT-11 version checking, TSX-Plus determines if the device is
present before installing the handler. This requires the following: 1) the
address of the device CSR register, as specified in location 176 of the device
handler file, be found; and 2) the installation code starting at location 200
in block O of the device handler file, if present, executes and returns with

the carry-bit clear.

4.1.2 I/0 queue element extension

TSX-Plus requires and stores more information concerning each I/0 request than
does RT-11. To accomplish this, TSX-Plus uses an I/0 queue entry which is 17
decimal words long. Each element in the I/0 queue has the following format:

-29-

Device Handlers

Name Offset Length Description

Q.LINK 0 2 Link to next queue entry

Q.CSW 2 2 Address of CSW for channel making request
Q.BLKN 4 2 Physical block number of request

Q.FUNC 6 1 Special function code

Q.UNIT 7 1 Device unit number (bits 0 through 2)

Q,JNUM 7 1 Job number issuing request (bits 3 through 7)
Q.BUFF 10 2 User buffer address relative to Q.PAR

Q.WCNT 12 2 Word count (+ =Read, O =Seek, - =Write)
Q.CoMP 14 2 Address of completion routine for request
Q.PAR 16 2 PAR relocation bias for buffer address

Q.PA5 20 2 Mapping value for kernel PAR 5

Q. UMRX 22 2 Address of UMR block assigned for I/0

Q.CHAN 24 2 User channel # associated with I/0 request
Q.DEVX 26 1 Device index number

Q.FLAG 27 1 Device control flags

Q.JOB 30 1 Number of job that is making request

Q.UMVB 31 1 Unibus UMR base register number

Q.UMPB 32 2 Original value of Q.BUFF when I/0 was initiated
Q.UMPP 34 2 Original value of Q.PAR when I/0 was initiated
Q.PA6 36 2 Mapping value for kernel PAR 6

Q.UCSW 40 2 Virtual address of user”s channel block
Q.ICSW 42 12 Copy of user”s channel block

TSX-Plus stores the number of the job issuing an I/0 request in the Q.JOB byte
of the queue element. Normally RT-11 only uses bit positions 11 through 15
(Q.JNUM) of the fourth word of the queue element. For compatibility, TSX-Plus
also stores the job number in these bits, however, for jobs numbers greater
than 32 (requiring more than 5 bits for representation), all job bits in this
fourth word are set. A job number of =zero implies the I/0 request was
initiated from the operating system.

4.1.3 Device handlers use of PARs

Any handler that accesses the user”s buffer directly by remapping kernel page
address register (PAR) 1 must be altered to use kernel PAR 6. Addresses in the
I/0 queue entries are automatically adjusted to pass virtual addresses within
the PAR 6 region (140000 to 157777). 1In addition, boundary checking must be
altered to correspond to this virtual address region. Any handler using PAR 6
must first issue a .INTEN request.

Kernel page address register 5 is also available for use in device handlers
which are not loaded as mapped handlers. If PAR 5 or PAR 6 is used within a
handler in an interrupt service routine (after doing an .INTEN) they do not
have to be saved since the .INTEN will do this; however, if they are used in a
handler other than at interrupt or fork level (e.g., on I/0 initiation) they
must be saved and restored by the handler.

-30-

N’

Device Handlers

4.1.4 Exteﬁéion for the LSI-11 bus

On the LSI-11 bus, only the DL, DM (with DILOG DQ215 and Emulex SC02C control-
lers), DU, and MS handlers are actually supported with full 22-bit DMA
capability, and these devices must have controllers which also support 22-bit
addressing and the controllers must be so configured in order to achieve actual
22-bit capability. In order to use any DMA device from a program located above
256K bytes in physical memory, the device and handler must be capable of and
configured for 22-bit addressing or the device must be declared to use system
I/0 mapping in its TSGEN device definition. See the description of the DEVDEF
macro (in the TSX-Plus Installation Guide) for more information on 22-bit
addressing and system I/0 mapping. If a DMA device or handler does not support
or is not configured for 22-bit addressing and does not use system mapping,
then attempts to use it will generally result in "Illegal or uninitialized
directory” or "Device I/0O error” error messages. Serial devices (such as LP,
LS, and DX) which do not use direct memory access do not require 22-bit

handlers or controllers or system I/0 mapping.

4.2 Device handler programmed requests

TSX-Plus supports the standard code expansion for device handler programmed
requests implemented in the RT-11 system macro library (SYSMAC.SML) which
include .CTIMIO, .DRAST, .DRBEG, .DRBOT, .DRDEF, .DREND, .DRFIN, .DRSET,
.DRVTB, .FORK, .INTEN, .MFPS, .MTPS, .SYNCH, and .TIMIO. See the RT-11 System
Support Manual for details concerning the usage of these programmed requests.
In some cases (as described below), TSX-Plus provides various extensions to
these programmed requests.

4.2.1 .FORK requests

In order to understand the processing of fork requests by TSX-Plus, it is
helpful to review the concept of interrupt priorities. The PDP-11 family of
computers has 8 interrupt priority levels, numbered O through 7. The priority
of an interrupt is selected by the device requesting the interrupt. The
processor (CPU) remembers the current interrupt priority in the processor
status word. An interrupt request is held in a pending state and is not
allowed to interrupt the processor if the current interrupt priority is equal
to or greater than the pending interrupt priority. Priority level 0 is the
priority at which the processor runs when no interrupt is being serviced.

Fork processing under TSX-Plus implements a software based interrupt system
which effectively operates at an interrupt priority level greater than hardware
priority O and less than hardware priority 1. Like the hardware interrupt
system, TSX-Plus fork requests have priority values that are specified by the
software component that is making the fork request. Also like the hardware
interrupt system a fork request may interrupt a currently executing fork
request of lower priority but may not interrupt a currently executing fork
request of equal or greater priority. The fork priority values range from 1 to
127 (decimal); the higher the numerical value, the higher the priority.

-31-

Device Handlers

Conceptually, fork priorities correspond to interrupt priorities in the range
0.001 through 0.127. Thus, any hardware interrupt request (which has a
priority in the range 1 through 7) can interrupt any fork request. Fork
requests are queued in order by priority value. If two or more requests have
the same priority value, they are queued in the order in which the requests
were made.

The standard instructions generated by a .FORK request are:

JSR R5,@FKPTR
.WORD fkblk-.

Where $FKPTR is a cell containing the address of the system fork routine and

fkblk is the address of a four word fork block. Although TSX-Plus does not
actually use the four word fork block specified by the request, it does consult
the device handler”s fork block when necessary to determine the status of the

fork entry.

The standard fork call works under both RT-11 and TSX-Plus. When this form of
fork call is used under TSX-Plus, the fork request is queued with a fork
priority of 50 (decimal).

An alternative fork request call may be used under TSX-Plus to specify a
priority for the fork. The form of this call is:

JSR RS5,@$FKPTR
.WORD 100000+priority

Where "priority"” is a fork priority value in the range 1 to 127. The constant
100000 must be added to the priority value to produce a value which TSX-Plus
can recognize as a priority rather than the standard RT-11 format above which
points to the offset of a user fork block. The assumption is that a handler
fork block is highly unlikely to occur at an offset greater than 100000 from
its fork request.

The current TSX-Plus fork priority values are defined in the intial part of
TSGEN as follows:

-32-

Nz’

Device Handlers

Symbol Value Description

FPSMAX 127. Maximum legal fork priority

FPSRT 100. Real-time interrupts

FPSCKT 70. 50/60 Hz clock interrupt processing
FPSCDI 60. Terminal character input processing
FPSCDO 55. Terminal character output processing
FPSDEF 50. Default fork priority

FPSIOF 50. I/0 complete

FPSIOA 50. I/0 abort entry

FPSPIO 50. PI output interrupt processing
FP$CK1 30. 0.1 second clock processing

FPSIOS 12. I/0 initiation

FPSMOV 10. Move data to/from cache buffer

Special care must be used to prevent contentions when coding internally queued
handlers which must manipulate the handler”s queue link pointers (CQE and LQE).

4.2.2 .SYNCH and completion requests

TSX-Plus groups completion requests into three categories. Normal completion
requests (such as I/0 completion, .MRKT, etc.) are assigned the lowest class

number one. Completion routines scheduled as a result of real-time interrupt
are assigned class number two. Completion routines resulting from a device
handler which issues a .SYNCH request are of class number three. A completion
request of a higher class may interrupt a currently executing completion
routine of a lower class. Thus, a .MRKT completion routine_can be interrupted
by a real-time completion routine which can be interrupted by a .SYNCH
completion routine. Completion routines cannot be interrupted by completion
routines of the same or lower class but are queued serially by class number.

4.2.3 .TIMIO and .CTIMIO requests

Under TSX-Plus it is not necessary for a handler to go to fork level before
issuing .TIMIO and .CTIMIO requests. If a job number is placed in the timer
control block used with a .TIMIO request, the handler will be synchronized with
the specified job number when the timeout routine is entered. If a zero job
number is specified in the timer control block, the handler timeout routine
will be running at fork level but not synchronized with any job if an I/0
timeout occurs. See the RT-11 Software Support Manual for more information on
the .TIMIO and .CTIMIO programmed requests.

4.3 Generating device handlers for use under TSX-Plus

TSX-Plus generally uses standard RT-11 XM device handlers, however, some
handlers supplied with RT-11 require minor modifications to function correctly
with TSX-Plus. The necessary handler modifications have already been applied
and are included in the dd.TSX handlers supplied with TSX-Plus.

If you ordinarily need to make no modifications to the handlers supplied by
Digital on your system, then you may use the handlers provided with the
TSX-Plus distribution. Most common changes can be accommodated through device
SET options. lowever, if you need to change the handlers supplied with RT-11,

-33-

Device Handlers

you may need to apply some patches before using them. See the TSX-Plus
Installation Guide for information concerning patching device handlers for use
with TSX-Plus.

4.3.1 Building device handlers

When building device handlers, it is necessary to set certain switches before
assembly which control conditional code exclusion and inclusion. TSX-Plus
requires memory management and optionally allows device timeout. However, it
does not support error logging, therefore, error logging should be excluded
when the handlers are built.

The conditional file used to build the device handlers supplied on the TSX-Plus
distribution media is named TSXCND.MAC (also present on the distribution
media). It contains the following conditionals:

TSX$p =1 3 TSX-Plus support

BF =1 sNo SJ support

MMGST =1 ;Memory management support
TIMSIT =1 sDevice time out

ERLSG =0 sNo Error log support

DXT SO =0 ;No Second RX11l controller support
DX$CSR = 177170 ;Status register for first RX11
DX$SVEC = 264 sVector for first RX1l

DYSDD =0 ;No RX02 double density only
DYTS$O =0 ;No Second RX02 controller
DYSCSR = 177170 ;Status register for first RX02
DYSVEC = 264 ;Vector for first RXO02

DDTSO =0 ;No Second DECtape II controller
DDSCSR = 176500 ;Status register for first DECtape II
DDSVEC = 300 ;Vector for first DECtape II
SRFNUM = 1. sNumber of RF1l platters

RJS083 =1 sRJS disk is RJSO3

DLSUN = 4. ;Number of RLO1/RLO2 units
DUSPOR =1 ;Number of MSCP ports

RPOS3 =1 ;RP11 disk is RPO3

MT$FSM =1 3sIM11 file-structured support
MTSUN = 2. sNumber of TM1l units

MMSFSM =1 ;TJUL16 file-structured support
MMSUN = 2. slWumber of TJULl6 units

MSSFSM =1 ;TS11 file structured support
MSSUN = 1. sNumber of TS1l units

MSSCSR = 172522 ;Status register of first TS1l1
MSSVEC = 224 ;Vector of first TS11

XL$CSR = 176500 ;XL CSR

XLSVEC = 300 ;XL Vector

LSSPC =0 ;No LS PC300 support

LSSCSR = 176500 ;Serial LP CSR

LSSVEC = 300 ;Serial LP CSR

-34-

e’

Device Handlers

Note that setting a conditional parameter to zero (0) disables the option and
setting it to one (1) enables the option. Since device timeout support is
always available with TSX-Plus, but is optionally supported by handlers, TIMSIT
may be either O or 1. Other parameters may be included to specify device
characteristics. Refer to Appendix C of the RT-11 System Generation Guide for
an entire list, default value, and description of device conditionals. These
parameters are not required and will use a default value if left unspecifled

except TSX$P and MMG$T which must both be set to 1 for TSX-Plus.

Before building device handlers, the appropriate patches (provided as .SLP
files on the distribution medium) must be applied. See the TSX-Plus Instal-
lation Guide for information on applying the patch files. The distribution
medium contains the .SLP files for all device handlers which require modifi-
cation for use with TSX-Plus. Most handlers may be built by the following
commands:

MACRO TSXCND+dd/0BJ
LINK/EXE:SY:dd.TSX dd

where "dd" represents the two character device name.

Only the file structured magtape handlers require different commands. They may
be built by using the following commands:

MACRO TSXCND+FSM/O0BJ
MACRO TSXCND+td/OBJ
LINK/EXE:SY:dd.TSX td,FSM

where "td" represents the tape device source module name (TJ, TS, or TM) and
"dd" represents the corresponding magtape device name (MM, MS, or MT). Notice
that the LINK command automatically appends the "TSX" file extension. Since
TSX~Plus uses handlers with the extension "TSX", the handlers must be linked
with that extension rather than with the extension "SYS". This allows the
TSX-Plus handlers to coexist on the same system disk with standard RT-11
handlers without conflict. Handlers for all devices included in your TSGEN
DEVDEF 1list, including the system disk, must be on the system disk when
TSX-Plus is started.

4.3.2 Defining device handler attributes

For each device to be available to the system an entry must be made in TSGEN
using the DEVDEF macro. (Note that CL, LD, TT, and SL have other generation
parameters and must never be included in a DEVDEF declaration.) This entry
requires optional parameters which specify the characteristics of the device
handler. Based on these characteristics, TSX-Plus can determine any special
operating considerations. The standard device drivers distributed with
TSX-Plus have predetermined flag settings known by the TSX-Plus start-up
program. Therefore, it is not necessary to specify flag options when using the
device handlers distributed with TSX-Plus. In cases where non-standard
handlers are installed, it is necessary to choose the correct device attributes
to insure correct operation.

35

~Device Handlers

The nine optional device parameters control the following operation:

DMA

MAPIO

EVNBUF

NOCACHE

NOMOUNT

REQALC

Device performs Direct Memory Access (DMA).

In UNIBUS systems with more than 256 K bytes of memory, TSX-Plus
allocates and controls UMRs (Unibus Mapping Registers) to perform
I/0 requests for a DMA device.

Perform I/0 mapping.

In QBUS systems with more than 256 K bytes of memory, TSX-Plus must
buffer the I/0 request into an 18-bit addressable memory region and
move the information into the user”s area when the users job is
above an 18-bit memory address. Requests are not buffered if the
job is below the 18-bit low memory region (256 K bytes).

Require even byte buffer address for I/O transfers.

Some device controllers (DMA devices) and device handlers (VM) which
implement a word transfer (rather than byte), require the buffer
address to begin on a even byte address (word aligned). 1In these
cases, odd byte addresses may cause I/0 failure or fatal system
errors which could halt system execution. TSX-Plus will check the
buffer address to insure that the transfer is word aligned. If the
I1/0 request does not begin on a word boundary, a user error will be
returned from the EMT request.

Do not use generalized data cache for this device.

For certain devices, it is desirable to disable generalized data
cache. For example, since the VM handler uses memory as a device,
it would be wasteful of machine resources to also allow it to
utilize generalized data cache. This would not only result in
displacement of information contained within the cache but would
also have the additional overhead of a useless memory to memory
transfer.

Do not allow mounts for this device.
If this option is specified, the physical device cannot be mounted
and therefore will not use directory caching.

Require device allocation before use.

If this option is specified, access to the device units is only
allowed to users who have allocated the device by use of the
ALLOCATE command.

-36—

g

MAPH

NOMAPH

HANBUF

Device Handlers

Load the device handler into a mapped handler region.

TSX-Plus will place device handlers within an extended memory
region, reducing the size of the low memory kernel region (re-
stricted to 40 K bytes). Handlers which are placed in extended
memory are known as "mapped” handlers. TSX-Plus communicates with
mapped device handlers by mapping PAR5 to the handler”s extended
memory base address. As device handlers are loaded, the interrupt
entry point is intercepted and directed to a low memory address
which will map to the handler then enter the handler”s interrupt

entry code.
Handlers may be mapped under the following conditions:

1. Since only one PAR register is used to access the device handler
it must not be larger than 8 K bytes.

2. Since handlers are accessed by kernel PAR 5, the handler must
not use kernel PAR 5.

3. Since only two device interrupt vectors per handler are
redirected, the handler may not connect to more than two device
interrupt vectors. In addition, since the redirection is
performed during initialization, the handler may not dynamically
connect to interrupt vectors.

4. When the device handler contains an internal buffer used for DMA
access, it must calculate the correct physical address taking
into account it”s own mapped address. It must also declare the
HANBUF option which will not allow it to be mapped on extended
UNIBUS configuration or when MAPIO is also specified. See the
HANBUF option for more information concerning this restriction.

Always load the handler into the low memory 40k byte region.

Some device handlers are not eligible for mapping into extended
memory regions and TSX-Plus will place them in the low memory kernel
region. The NOMAPH option will take precedence over the MAPH option
if both are specified.

Handler contains an internal I/0 buffer used for DMA transfers.

Handlers with internal DMA buffers require special coding to be used
as a mapped device handler. 1In addition, when TSX-Plus is evalu-
ating the system definitions and device characteristics for loading
device handlers, it will never map a handler which uses an internal
buffer if the handler also requires mapped I/0 transfers in QBUS
systems with more than 256 K bytes of memory (MAPIO) or if the
handler resides in a UNIBUS system with more than 256 K bytes of

memory.

-37-

Device Handlers

The following subroutine illustrates how a handler can translate the
virtual address of an internal I/0 buffer into the correct physical

address.
or not the handler is mapped:

This subroutine will function correctly under TSX-Plus whether

; Calculate a 22-bit buffer address from the

3 WwWithin the handler.

virtual address of a buffer which is contained

; This is necessary if the handler is mapped.

5 Input:

; OLDBA - Virtual address of the internal buffer

; EXTADR - Zero

3

;5 Output:

; OLDBA - Low order (16-bits) of the physical address
H EXTADR - High order (6-bits) of the physical address

; All registers are preserved

b

MAPADR: CMP OLDBA,#120000 ;Handler loaded into a mapped region?
BLO 10§ ;Br if handler is below mapped region
MOV RO,-(SP) ;Save registers
MOV R1,-(SP) ;
MOV @#172352,R1 ;Get the handler PARS5 relocation value
CLR RO ;Clear high order address cell
ASHC #6,R0O ;Convert to physical memory address
BIC #160000,0LDBA ;Isolate offset (clear virtual PAR #)
ADD R1,0LDBA ;Add the phys. relocation to low order
ADC RO sAdd carry to high order
ASH #4 ,RO ;Shift high order to bits 4 thru 9
MOV RO,EXTADR ;Store high order address
MOV (SP)+,R1 ;Restore registers
MoV (SP)+,R0 ;

10s: RETURN

4.4 Debugging a device handler

sReturn

A special version of the ODT debugging program is provided with TSX-Plus for
use in debugging user written device handlers. 1In order to perform this type
of debugging the following two files must be available on the system disk when
TSX-Plus is started: TSXDB.SAV and SYSODT.REL.

In order to start TSX-Plus under control of the system debugging program, type
R TSXDB

This is analogous to the R TSX command that is normally used to start TSX-Plus

but has the effect of loading the system debugging program into memory with

TSX-Plus and transferring control to it before TSX-Plus performs its initiali-
zation.

-38-

)

Device Handlers

The system debugging program requires approximately 2,900 bytes in the 40K byte
low-memory portion of TSX-Plus. If your generated system is so large that
there is insufficient space to start it with the debugging program, regenerate
the system with all handlers removed except the ones that are needed for
execution and reduce the number of time-sharing lines. '

When you start the system by typing R TSXDB, it responds by printing an
asterisk indicating the debugger is in control and waiting for a command. The
debugger only accepts commands from the machine”s console terminal. The
commands take the same form as for standard ODT except some of the lesser used
commands (such as searching through memory) have been removed to save space.

On entry to the debugger, register Rl ($1) contains the address of an instruc-
tion that is executed each time control-R is typed. If you set a breakpoint at
this location you can trigger a breakpoint whenever you wish, after the system
is started, by typing control-R at any active terminal.

Once the control-R breakpoint is set, start the system by typing ";G". After
the system has started and you have logged in, determine the address of the
base of the handler by use of the SHOW DEVICE keyboard command. The handler
being debugged should be specified as non—-mapped (i.e., do not load into
extended memory) when the system is generated. As a result of this, the
"P. base” (physical memory) base address will be zero, and the "V. base”
address will be the actual address of the base of the handler. This is the
address of the first cell in the handler header (block 1 of the handler) which
contains the device vector address. Note, this address is the base of the
handler not the handler entry point; the entry point is at base address + 12

(octal).

Once the base address of the handler is known, trigger a breakpoint by typing
control-R, set a debugger relocation register at the base of the handler, set
breakpoints within the handler, and proceed by typing ";P". :

The following sequence of commands illustrates the process of starting TSX-Plus
with the system debugger. The values shown for addresses within the system
will vary depending on the options included when the system is generated.

.R TSXDB ! Start system with debugger

ODT VO04.00 ! Debugger indicates it is in control
*$1/020504 ! Get address of control-R breakpoint
*020504; 1B ! Set a breakpoint at control-R

*;G ! Start the system

In the case where you are debugging a handler which fails before the system is
started (such as the handler for the system device), the procedure for
debugging is somewhat more complex. You still start the system under debugger
control by typing "R TSXDB", but instead of relying on the control-R breakpoint
(which requires that the system get started) set a breakpoint at the location
whose address corresponds to the symbol INIJMP which can be found in the TSEXEC
section of the system LINK map. The instruction at INIJMP is executed after

-39-

Device Handlers

the portion of the system initialization that loads handlers but before the
system handler is used. Once you have set a breakpoint at INIJMP, start
execution by typing ";G".

Once the breakpoint at INIJMP is triggered, you must determine the base address
of the handler by examining system tables. The table PNAME (in the TSGEN
portion of the map) contains a one word entry for each device; the entry is the
RAD50 name of the device. Examine each entry in this table, using the "X"
debugger command to convert the octal value to RAD50, until you locate the
entry for the handler to be debugged. The HANENT table (also in the TSGEN
section of the map) is a table that is parallel to PNAME and contains the
addresses of the handler entry points. Examine the entry in HANENT that has
the same offset as the device name in PNAME. This is the entry point of the
handler. Subtract 12 (octal) to obtain the address of the base of the handler.
Breakpoints can then be set in the handler and execution continued by typing

"SpU.

4.5 Internally queued device handlers

Handlers that perform internal queuing must take special precautions to avoid
possible contention from prioritized fork request processing. Handler
initialiation code is procesing at fork priority 12 while all other code
(interrupt, abort, timout) is running at fork priority 50. See the previous
section in this chapter discussing fork prioritization. If necessary, a fork
request of priority 50 may be issued from the handler”s initiation section in
order to serialize processing within the device handler. 1In certain circum-
stances, it may be desirable to alter FP$IOS (the I/O initiation priority) in
TSGEN to be 50.

Handlers that perform internal queuing must set the error flag in the Channel
Status Word (CSW) if, for any reason, they abort or fail to complete pending
I/0 requests. This is particularly important when aborting a pending I/0
operation which is requested by the generalized data cache facility.

-40-

Device Handlers

5. PROGRAMMING FOR SPECIAL DEVICE HANDLERS

5.1 Special TSX-Plus device handlers

Several device handlers are uniquely integrated into the TSX-Plus environment.
The communication line handler (CL), the logical subset disk handler (LD), the
terminal line handler (TT), and the single line editor (SL) are provided as
integrated system features and do not require device declarations (DEVDEF).
The professional interface handler (PI) is provided with PRO/TSX-Plus and when
used is defined as a shared run-time system and not as a device handler. The
TSX-Plus virtual memory handler (VM) utilizes knowledge of the TSX-Plus
environment to determine the usable memory space available. VM is the only
special TSX-Plus device handler which requires a device declaration (DEVDEF) in
order to be used.

5.1.1 Communication line handler (CL)

The CL handler allows Input/Output operations to be performed to serial
communication 1lines connected to DL11, DLV1l1l, DZ11l, DZV1ll, DH1l, and DHV1l
communication controllers. With the CL handler it is possible to have some
lines on a multiplexer used as TSX-Plus time-sharing lines, and other lines on
the same multiplexer used to drive I/0 devices such as printers, plotters, and
modems. It is also possible to use a line as a time-sharing line some of the
time and as a communications line at other times. Some of the important
features of the CL handler are summarized below:

1. Up to 16 communication lines may be controlled through the CL handler.
The first 8 CL units are named CLO through CL7, the second set of 8 units
are named ClO0 *through Cl7. The lines may be connected to any type of
communication controller that is supported by TSX-Plus and may share the
same multiplexer controllers as TSX-Plus time-sharing lines.

2. Lines may be dedicated as communication lines or may be switched between
time-sharing lines and communication lines.

3. Internal queueing is wused within the handler to allow concurrent
input/output operations to be performed on all of the lines.

4. The CL handler allows both input (read) and output (write) operations.
Full duplex (simultaneous) read and write operations may take place on
each line.

5. The communication lines may be used with the TSX-Plus spooling system to
allow spooled output to devices on communication lines.

6. The CL handler responds to XON/XOFF (control-Q/control-S) control

characters to stop and start its transmission and will generate XON/XOFF
characters to control the speed of a device transmitting to a CL line.

-41-

Special Device Handlers

7. A "binary mode" is available for CL lines to allow full 8-bit, transparent
I1/0 to devices.

8. Modem control is supported. Ring and carrier detect signals may be
monitored and data terminal ready (DIR) can be controlled by a program or
SET command.

9. The CL handler is implemented as a system virtual overlay, minimizing the
amount of code and data that is required in the umnmapped portion of the
system.

10. The CL handler can be used as a replacement for the LS, XL, and XC
handlers (the XL and XC handlers are used with the RT-11 VTCOM program).

11. A terminal can be "cross connected” to a CL line by use of the SET HOST
command so that characters typed at the terminal are sent directly out the
CL line and characters received on the CL line are displayed at the
terminal.

Once a system has been generated with communication lines, the lines may be
accessed as normal devices using the names CLO, CL1l, Cl10, Cl7, etc. If the CL
handler is used to drive the system printer, it is convenient to use an assign
command to assign the logical name LP to the corresponding CL device.

The device name "CL" is functionally equivalent to "CLO". "Cl" is equivalent
to "Cl0". Attempts to use a CL unit which is not currently associated with a
line will return an error status just as if the CL device was not recognized by

the system.

5.1.1.1 I/0 operations: The .READ/.READC/.READW and .WRITE/.WRITC/.WRITW EMT s
may be used to perform standard read/write operations to the CL lines. The CL
handler allows full' duplex input/output operation, which means that read and
write operations may be simultaneously active on a CL line.

When a .READ[C/W] EMT is used to read from a CL line, the operation is complete
when the requested number of words have been accepted or a control-Z character
is received.

The input character silo is used to store characters received from the line.
This buffer prevents characters from being lost during the interval when one
read EMT is completed and another is issued to the CL handler.

The CL handler responds to received XON (control-Q) and XOFF (control-S)

characters, starting and suspending transmission to synchronize its character
flow with the device connected to the line.

-42-~

g

Special Device Handlers

5.1.1.2 Control character processing: Processing of certain control characters

through CL units depends on the individual character, the settings of the CL
unit and the particular operation in progress. '

The following table illustrates the handling of special input characters to a
CL unit. Control characters not listed are treated as normal characters on

input.

Octal
Char Value Input handling
NUL 0 Discarded unless in binary input mode (BININ).
LF 12 Discarded unless in LFIN mode (always input by
.SPFUN 203).
CR 15 Always input. Also terminates read for .SPFUN 260.
XON 21 Re-enables transmission to CL unit, except in BININ

mode when it is input as a normal character.

XOFF 23 Halts transmission to CL unit, except in BININ mode
when it is input as a normal character.

A 32 Sets end-of-file flag and terminates read (except
for .SPFUN 203 by which "“Z is treated as a normal
character).

The following table illustrates the handling of special output characters to a
CL unit. In NOCTRL mode control characters not listed are not sent. In BINOUT
mode, all special control character output processing is bypassed. In
addition, in BINOUT mode automatic XOFF transmission when the input silo
becomes full is disabled.

-43-

Special Device Handlers

Char

NUL

TAB

LF
FF

CR

5.1.1.3 .SPFUN operations:

Octal
Value Output handling

0 Never sent except in BINOUT mode.

11 Expanded to spaces in NOTAB mode. In TAB mode and width
not set to O, TAB is discarded if it would exceed the
set width, just as normal characters are.

12 Discarded in NOLFOUT mode if preceding character was a

carriage return.

14 In NOFORM mode, FF is expanded to enough line feeds to
advance to the top of the next page.

15 Discarded in NOCR mode.

are recognized by the CL handler.

CL unit to which the channel was opened.

Code Function

201 Clear handler

202 Control break transmission

203 Read with byte count

204 Get handler status

205 Terminate I/0

250 Set option flags

251 Clear option flags

252 Set page length

253 Set skip lines

254 Set page width

255 Get modem status

256 Set line speed

257 Abort pending 1/0

260 Read a line of input

261 Get number of input characters pending

262 Get number of output characters pending

263 Write with byte count

264 Set ENDPAGE and ENDSTRING parameters
Function 201 -- Clear handler.

(control-Q) to the CL device.

—4b—

The following special function codes (.SPFUN EMT s)
The special functions apply to the specific

This function clears the internal handler flag
that says an XOFF (control-S) character has been received and transmits an XON

Special Device Handlers

Function 202 -- Control break transmission. This function starts or stops the
transmission of a break signal. The word count specified with the .SPFUN
controls whether transmission of a break signal is started or stopped. If the
word count 1is non-zero, break transmission is started; break transmission
continues until another .SPFUN is done with function code 202 and a word count
of zero.

Function 203 -~ Read with byte count. This function performs a read operation
but the "word count” value specifies a byte count instead. This function does
not complete until at least one byte is read. However, if a byte count greater
than one is specified, bytes are moved from the input ring buffer until either
the specified byte count is satisfied or the input ring buffer is emptied. If
fewer than the requested number of bytes are available, the remainder of the
buffer is filled with nulls. The control-Z character does not signal end of
file for this type of read —- control-Z is read as an ordinary character.

Function 204 —— Get handler status. A status code is stored into the first
word of the buffer specified with this function. The meaning of the flag bits
is as specified below:

Bit O: 1 ==> XOFF has been sent to stop transmission.
Bit 1: 1 ==> XOFF has been received from the remote device.
Bit 2: 1 ==> Carrier has been detected

Function 205 -- Terminate I/0 to the 1line. This function "turns off" a
communication line. The input ring buffer is emptied (its contents are
discarded) and a flag is set causing any other characters received from the
line to be discarded. Data Terminal Ready (DTR) status is dropped. The line
will be turned on again whenever another 1/0 operation is performed to it.

Functions 250 and 251 -- Control option flags. These special functions are
used to set and clear handler option flags. Function 250 sets the specified
flag bits, function 251 clears the specified flag bits. The flag bits
correspond to handler SET options. If the option flag is cleared (0), this
corresponds to the NOoption setting. The bit positions of the options are
shown in the following table. The option flags are contained in a one word
buffer for the .SPFUN. For a detailed description of the SET commands, see the
TSX-Plus Reference Manual.

~45—

Special Device Handlers

Bit Mask Option Function summary

0 000001 FORM Send form feed characters

1 000002 TAB Send tab characters

2 000004 LC Send lower case characters

3 000010 LFOUT Send line feed characters

4 000020 LFIN Accept line feed characters

5 000040 FORMO Send form feed on block O write
6 000100 BINOUT Send binary output characters

7 000200 BININ Accept binary input characters
8 000400 CR Send carriage return characters
9 001000 CTRL Send control characters

10 002000 DTR Raise Data Terminal Ready (DTR)
11 004000 EIGHTBIT Accept and send 8 bit characters

Function 252 -- Set page length. This function performs the operation of the
SET CL LENGTH=n command. The .SPFUN must have a one word buffer containing the
number of lines per page.

Function 253 -- Set skip lines. This function performs the operation of the
SET CL SKIP=n command. The .SPFUN must have a one word buffer containing the

number of lines to skip at the bottom of the page.

Function 254 -- Set page width. This function performs the operation of the

SET CL WIDTH=n command. The .SPFUN must have a one word buffer containing the
line width.

Function 255 -- Get modem status. This function is used to check on the status
of a modem connected to a CL line. The modem status is returned into the first
word of the buffer specified with the .SPFUN. The flag bits returned are
described below:

Bit Meaning when set

—— -—

0 Ring indication
1 Carrier is detected
2 Data Terminal Ready is asserted
Function 256 -- Set line speed, character length and parity control. This

function is used to set the transmit/receive speed for a CL line. This .SPFUN
requires a one word buffer containing a value which has the following form (in
binary):

OPLxSSSS

The low-order 4 bits ("SSSS") specify the speed. The following baud rates are
represented by the indicated speed codes (speed code values are shown in
decimal): 50=0, 75=1, 110=2, 134.5=3, 150=4, 300=5, 600=6, 1200=7, 1800=8,
2000=9, 2400=10, 3600=11, 4800=12, 7200=13, 9600=14, 19200=15. Bit 5 ("L")
specifies the character length. If this bit is O, the character length is 8

46~

N

Special Device Handlers

bits; if this bit is 1, the character length is 7 bits. Bit 6 ("P") specifies
parity control selection. If this bit is 0, parity is disabled and bit 7 is
ignored; if this bit is 1, parity generation and checking is enabled. Bit 7
("0") selects even or odd parity and is only meaningful if bit 6 is 1 (enable
parity). If bit 7 is 0O, even parity is selected; if bit 7 is 1, odd parity is
selected. Note that if only the speed value is specified, with all other bits
zero, 8 bit characters with no parity are selected.

This .SPFUN can only be used for lines connected to hardware controllers that
support programmable baud rates such as DLV11E, DZ1l1l, DZV1l, DHl1l, DHV1l, and
the Professional printer and communication ports. A baud rate of 19200 is not
supported by some hardware controllers including the DEC DZ1ll controller
(although it actually works with most DEC DZ1ll controllers). The DH1l does not
support baud rates of 2000, 3600, or 7200; and the DHV1l does not support baud
rates of 3600 or 7200.

Function 257 -- Abort pending I/0. Abort all pending read and write operations
issued by the job executing the .SPFUN on the CL unit.

Function 260 —— Read a line of input. This special function reads a line of
input terminated by a carriage return character. The "word count” value
specified with this special function is interpreted as a byte count. The read
terminates when any of the following conditions is met:

1. A carriage return character is received. The carriage return is
stored in the buffer and the remainder of the buffer is null filled.

2. The buffer is filled before a carriage return is received.
3. A control-Z is received.

Function 261 —— Determine number of input characters pending. One word is
returned into the user buffer, containing the number of characters available to
be read from the CL unit associated with the specified channel. This function
can be used to test for pending input prior to issuing a read (.READx or
.SPFUN) on the channel. If no characters are pending, attempts to read from
the channel will not complete until the word (or byte) count is fulfilled. If
you do not wish to have a read request pending until the word (or byte) count
is fulfilled, then first determine the number of characters pending in the
input buffer. If there are none, then do not issue the read.

Function 262 —- Determine the number of output characters pending. One word is
returned into the user buffer, containing the number of characters in the
output buffer which have not yet been transmitted.

Function 263 —— Write with byte count. This special function is used to write
a block of characters to a CL line with the length of the block specified by a
byte count rather than the word count used with the .WRITE EMT. This is useful
in situations where an odd number of bytes must be written and null characters
cannot be used to pad out the last word. The .SPFUN follows the standard form

-47-

Special Device Handlers

except a byte count is specified for the fifth parameter (which is normally
used to specify a word count).

Function 264 -- Set ENDPAGE and ENDSTRING parameters. This special function is
used to allow a running program to specify the number of form—feed characters
(ENDPAGE) and a seven character string (ENDSTRING) which will be appended to
the end of each output file. The buffer address must point to a word aligned
storage area of which the first word contains the number of form-feed char-
acters. The second and subsequent words contain the string in ASCIZ form to
append to the end; any characters beyond the first seven are ignored.

5.1.1.4 Redirecting CL and time-sharing lines: A system service call (EMT) is
available to allow a program to assign a CL unit to a particular line. The
form of the EMT is:

EMT 375
with RO pointing to an argument block of the following form:

.BYTE 0,155
.WORD CL unit
.WORD line_pumber

where "CL unit” is the CL unit number, and "line number" is the number of a
TSX-Plus time-sharing line or dedicated CL line. If the specified line number
is O (zero), the CL unit is disassociated from any line. TERMINAL privilege is
required to use this EMT.

If an error is detected, the C-flag is set on return and the following error
codes are returned:

Code Meaning

User issuing the EMT does not have TERMINAL privilege
An invalid CL unit number was specified

An invalid line number was specified

The specified line is already assigned to a CL unit
A time-sharing user is logged onto the specified line
The specified CL unit is currently busy

[)N I S R VLR G ol

CL units specified using the CLDEF macro in TSGEN are initially connected to
dedicated CL lines. Note that although these lines are dedicated for use by
CL, the CL units which are initially assigned to these lines may be reassigned
to other 1lines. The unallocated CL units declared by use of the CLXTRA
parameter in TSGEN are initially not associated with any line. The SET CLn
LINE=n and SET HOST/PORT=CLn keyboard command or the system service call (EMT)
can be used to assign any CL unit to any free time-sharing line or free
dedicated CL line. Thus it is possible to use a line as a TSX-Plus time-
sharing line during certain portions of the day and then assign a CL unit to
the line and use it to drive a modem or other device during other portions of

-4 8-

N

Special Device Handlers

the day. Dedicated CL lines use less memory space than time-sharing lines but
may only be accessed as CL units. See the TSX-Plus Reference Manual for a full
description of the SET CL and SET HOST command. TERMINAL privilege is required
to use these SET commands.

The following example commands illustrate how CL unit 1 can be assigned to
time-sharing line 2. The logical name "LP" is then assigned to CLl so that the
PRINT command will direct output through CL1. CLl can be declared to be a
spooled device in TSGEN:

.SET CL1 LINE=2
.ASSIGN CL1 LP

The SHOW CL and SHOW TERMINALS keyboard commands can be used to display

information about which CL units are associated with which lines. The SHOW CL
command also indicates if a CL unit is spooled and lists the options which are
set for the unit. See the TSX-Plus Reference Manual for information concerning
the SHOW command.

5.1.1.5 VTCOM/TRANSF support and CL handler: The RT-11 VTCOM/TRANSF file

transfer programs may be used to communicate and transfer files between RT-11
and/or TSX-Plus systems.

When VICOM is used to communicate with another system, the system where the
user is located and running VICOM is known as the "local"” system whereas the
remote system to which communication is taking place is known as the "host"
system. TSX-Plus may be used either as the local system, the host system, or
both.

The user at the local system runs the VICOM program to initiate communication
with the host system. The VTCOM program uses the CL handler to connect to a
communications line. The CL handler must be set up to drive a DL1l, DLV1l,
Dz11, DZV1l, DH11l, DHV1l, or Professional printer or communication port that is
connected either directly or through a modem to the host system. -

When TSX-Plus is used as the local system, the IOABT sysgen parameter must be
set to 1 to enable handler abort entry code.

If the CL handler is used with the VTCOM program, it is necessary to assign the
logical name XL (or XC if on the Professional) to the CL (or Cl) unit control-
ling the communications line. It is also a good idea to allocate the device so
that conflicts with other users will not occur. The NOLFOUT option should be
specified for a CL line used with VICOM. For example, the following commands
would be appropriate to direct VICOM to use line CLO:

.SET CLO NOLFOUT

.ASSIGN CLO XL (or XC)
.ALLOCATE XL (or XC)

—-49-

Special Device Handlers

When TSX-Plus is used as the host system, the connection from the local system
may be made through any TSX-Plus time-sharing line on the host system.

5.1.1.6 Terminal/Communication line cross connection: It is possible to cross
connect a time-sharing line with a CL (communication line) line in such a
fashion that all characters received from the time-sharing line are transmitted
directly to the CL line and all characters received from the CL line are
transmitted directly to the time-sharing line. This is useful to allow a
time-sharing line on one TSX-Plus system to be used as a terminal on another
system connected through a CL line.

This function is similar to using VTCOM to communicate through a CL line but
has the advantage that there is much less overhead because the cross connection
is made at a low level within TSX-Plus such that characters do not have to be
passed to a running application program. Of course the internal cross-
connection feature does not provide the file transfer capabilities of VTCOM.

The keyboard command used to establish a cross connection has the form:

SET HOST/PORT=ddn

where "ddn" is the name of a CL or Cl device to which your terminal is to be
cross connected. For example, the following commands would connect CL wunit 1
with terminal line 4 at 9600 baud and then cross connect the current terminal

with the CL unit:

SET CL1 LINE=4,SPEED=9600
SET HOST/PORT=CLl

TERMINAL privilege is required to use the SET HOST command. Once the cross
connection is established, characters typed at your terminal are transmitted to
the CL line.

5.1.2 RKO6/RKO7 handler (DM)

The DM device handler .SPFUN function codes 376 and 377 attempt to return a
status code into the first word of a user buffer which is one word longer than
the actual transfer size. This is incompatible with system I/0 mapping. It
appears that the only system utility program which issues these functions is
DUP (SQUEEZE and INITIALIZE commands). If it is necessary to use the MAPIO
option with the DM device handler, it is recommended that both INITIALIZE and
SQUEEZE commands for DM units be issued only under RT-11.

The DM handler supports 22-bit (as well as 18-bit) QBUS I/0 with the DILOG
DQ215 and the Emulex SC02C controllers.

-50-

e

Special Device Handlers

5.1.3 IEEE GPIB handler (IB) »

The normal IB supplied subroutines attempt to open the IB device on decimal
channel numbers 16, 17, 18, and 19. TSX-Plus normally allocates 20 (decimal)
channels and allows these IB subroutines to execute without changes. Non-
standard configurations where multiple devices may be used and more than 20
(decimal) channels are required are not supported.

A change is also necessary to the IB device handler to alter the mapping
register used from PAR1 to PAR6. See the section concerning device handlers
use of PARs discussed earlier in the chapter on Device Handlers. See the
Patching and Building TSX-Plus Device Handlers chapter in the TSX-Plus
Installation Guide for information on how build an IB handler which will
function with TSX-Plus.

The IB subroutine "IBSRQ" is implemented in the DEC IB handler as a subroutine
call from the handler directly to the user code region. Since TSX-Plus does
not load any user job in the same map region as the operating system, the call
will execute part of the operating system usually resulting in a fatal system
error or halt. Therefore, the "IBSRQ" call is unsupported in TSX-Plus.

5.1.4 Virtual memory handler (VM)

The virtual memory handler (VM) allows memory which is not allocated for use by
the operating system to be used as a RAM based pseudo-disk device. VM may not
be used to contain either the swap or spool system files due to the nature of
system completion routine nesting. When VM is used as a spool or swap device,
unpredictable operation may occur resulting in fatal system errors and system
halts.

The VM handler uses the memory space above the top of memory used by TSX-Plus.
TSX-Plus can be limited to using less than all installed memory by specifying
the TSGEN MEMSIZ parameter. (See the TSX-Plus Installation Manual for details
on the MEMSIZ setting.) Since a memory access is quite a bit faster than a disk
access, VM can be use for greater speed in locating and reading files which are
frequently accessed.

Since most machines will lose the contents of memory during a power outage, VM
should be restricted to read-only, scratch, or executable files. It may be
used to speed the execution of heavily overlaid programs or store temporary
intermediate sort or work files.

After TSX-Plus is started, VM must be initialized before it can be used. Since
VM is implemented as a block structured device, and each block contains 512
bytes, the number of blocks available to VM will be two times the number of K
bytes allocated. The directory does require some storage and therefore the
number of blocks reported after initialization will be slightly smaller than
this total. For instance, in a system which contains 512K bytes total physical
memory and with MEMSIZ=256., VM will have 256K bytes available. After
initialization, a directory of VM will then show slightly less than 512 blocks.

51

Special Device Handlers

VM will normally calculate the correct base address to use to be just above the
last address used by TSX-Plus. You may increase this base address. The format
of the SET command used to adjust the base address used by VM is:

SET VM BASE=nnnnnn

where "nnnnnn" represents bits 6 through 22 of the base memory address (in
octal) which VM is allowed to use. However, if you specify a base address
below the top address of TSX-Plus, VM will dynamically adjust this base address
back above the top of TSX-Plus. For example, if you wish to set the base
address of VM to start after the first 512K bytes, then "nnnnnn" should be
20000 since the memory address is 2000000 (octal). Any time a new base address
is defined, VM should be initialized. '

VM will normally calculate the correct top address to use to be at the absolute
top of physical memory. You may decrease this top address. The format of the
SET command used to adjust the top address used by VM is:

SET VM TOP=nnnnnn

where "nnnnnn" represents bits 6 through 22 of the top memory address (in
octal) which VM is allowed to use. For example, if you wish to set the top
address of VM to end at 1280K bytes, then "nnnnnn" should be 50000 since the
memory address is 5000000 (octal). Any time a new top address is defined, VM
should be initialized.

-52-

6. TERMINAL AND CL INPUT/OUTPUT PROCESSING

6.1 Terminal input character processing

To achieve maximum efficiency, TSX-Plus divides the terminal character input
processing into three sections. The first section performs minimal character
processing and runs at device interrupt priority level. The second section
performs more lengthy character processing and runs at fork level. The third
level passes characters to requesting programs and runs at program level. This
system was chosen to minimize both system overhead and the time spent running
at interrupt level. The interrupt and fork level character processing routines
are illustrated in the following diagram:

Terminal Input Character Processing

Interrupt Level Processing Fork level Processing
+- + + +
| Input interrupt | | Fork entry |
+ + + + : +
l |
v + >+
+ + + I |
| Get character from | | v
| hardware controller | |+ t +
F + + | | Get next character |silo empty
| | | from silo buffer |~
v |+ + + |
+ + —+ l | I
| Process XOFF and | | v |
| XON characters | | + + —+ |
+ t + | | Do main character | |
| | | processing | |
v |+ +— + |
+ + t l I I
| Move character into | | v |
| input silo buffer | |+ + + |
+ } + | | Move character into | |
| | | input ring buffer | |
v |+ + -+ |
+ + + | | |
| Request fork level | | v |
| processing if not | +< + |
| already active I v
| |
v v
+ - + + + +
| Return from interrupt | l Exit from Fork |
+ + +- +

-53=

TT and CL I/0 Processing

6.1.1 Interrupt level input character processing

In order to minimize system overhead and the length of time running at
interrupt level, only a small amount of character processing takes place in the
input character interrupt routine. When an input interrupt occurs, the input
interrupt routine is entered at device interrupt priority level. The received
character is checked to see if it is an XOFF (control-S). If so, a flag is set
causing character output on the line to be suspended. If the terminal
controller is a DMA device such as a DH-11 or DHV-11 the current DMA transfer
is aborted and information is saved to allow it to be restarted later. Next
the character is checked to see if it is an XON (control-Q). If so, the
output-suspension flag is cleared for the line and transmission to the line is
restarted.

If the received character is other than XOFF or XON, it is stored into a
holding buffer known as the input character "silo”. It is called a silo
because it functions as a first-in-first-out holding buffer. There is a
separate character silo for each line. The default silo size is set by the
TSGEN parameter NCSILO and the size of a silo for a particular line may be
controlled by the SILO macro within a TSGEN line definition block. The maximum
silo size allocated is 255; specification of silo sizes greater than this are
reduced to be 255. If the number of free character positions available in the
silo is reduced to a value equal to the TSGEN parameter NCXOFF (or specified by
the SILO macro), an XOFF character is transmitted. If the silo overflows, the
input character is discarded. When an XOFF character is transmitted due to the
silo becoming nearly full, a flag is set which causes an XON character to be
sent when the number of characters remaining in the silo decreases to a value
equal to the TSGEN parameter NCXON (or specified by the SILO macro).

The process of getting a character from the hardware controller, checking it,
and storing it in the input silo, is repeated until all pending characters have
been accepted from devices such as DZ(V)-11l and DH(V)-11 which have hardware
silo buffers.

After all pending characters have been processed and moved to the input silo, a
check is made to see if fork level input character processing is active due to
a previous input interrupt. If fork level processing is not active, a flag is
set saying fork level processing is active and then a .FORK is done and fork
level input character processing takes place. Once the fork level processing
routine has been entered, the interrupt priority level is set to O (zero) and
further input interrupts can occur. If additional interrupts occur while the
fork level routine is running, they move characters into the input silos but do
not reenter the fork level processing routine until it has finished processing
all of the characters in the input silos.

The most critical parameter related to the input silo buffers is the one which
controls how nearly full the silo is allowed to become before an XOFF character
is transmitted. This parameter must be large enough to allow time for the XOFF
character to be transmitted by the TSX-Plus system, and received and processed
by the remote system. The minimum acceptable value depends on the speed of
transmission and the responsiveness of the remote system. The recommended
value is 12.

~54~

Nz’

TT and CL I/0 Processing

The silo parameter that controls when an XON character is transmitted is not
critical. The recommended value is 4.

The total silo buffer size should be large enough to allow some room between
the XOFF and XON points. If the character input rate is slow (for example from
a terminal being used by a typist) the buffer size can be as small as a few
characters plus the XOFF and XON parameter values. However, if the input is
being received from another computer which can send high speed bursts of
characters, then the buffer size should be increased to avoid rapid trans-
mission of XOFF/XON character pairs. The ideal size of the silo buffer for
this type of application is equal to the received packet size plus the XOFF
cutoff parameter value. The silo buffers occupy space in the 40Kb low memory
portion of TSX-Plus so they should not be made excessively large.

6.1.2 Fork level input character processing

The work performed on each character in the fork level routine is much more
extensive than that done at interrupt level. The major tasks performed in the
fork level routine are:

1. Processing of control characters such as control-C, control-W,
control-U, control-R, and delete.

2. Checking for activation characters (such as carriage return) and
restarting a program waiting for terminal input when one 1is
received.

3. Echoing characters (including updating the window contents if
process windowing is turned on).

4. Checking for field width activation and field width limits.

5. Storing the character into the appropriate input ring buffer.

In addition to the input silo buffer, each line has an "input ring buffer”
which is wused by the fork level routine to hold characters until they are
accepted by the program. The default size of the input ring buffer is set by
the DINSPC sysgen parameter but it may be controlled on a line-by-line basis by
use of the BUFSIZ macro in TSGEN. If the number of free character positions in
the input ring buffer is reduced to 8, a flag is set for the line preventing
further characters from being moved out of the silo buffer. Thus characters
will accumulate in the silo buffer until it is nearly full at which time an
XOFF character is transmitted.

The fork level routine executes until all pending characters in silo buffers
for all lines have been processed.

55

TT and CL I/0 Processing

6.1.3 Program level input character processing

The third level of character processing takes place at program execution level.
The primary purpose of this routine is to move characters from the input ring
buffer to the user program as they are requested by system service calls such
as .TTYIN, .GTLIN, and .READ. If the single line editor (SL) facility is
active, its processing is performed within this routine. This routine is also
responsible for suspending the execution of a job which requests terminal input
when no more activation characters have been received.

6.2 CL input character processing

Input character processing for CL lines is organized in a fashion similar to
that used for time-sharing lines. The same input interrupt routine is used for
time-sharing lines and CL lines and the same silo buffers are used to store
characters as they are received. However, different routines are called to
perform fork level processing. Fork level processing for CL lines is simpler
than for time-sharing lines since there are fewer significant control char-
acters. Also, no input ring buffers are used for CL lines. Instead, the fork
level routine moves characters from the silo buffer into the data buffer
specified for the .READ issued to the CL device.

-56-

TT and CL I/0 Processing

6.3 Terminal output character processing

As with terminal input character processing, terminal output character
processing is separated into levels. However, there are only two levels for

character output processing: program level and interrupt level. The diagram
below illustrates the output character processing routines:

Terminal Output Character Processing

Interrupt Level Processing Program Level Processing
+ + + +
| Output Interrupt | | Main character |
+ + + | processing |
I + + +
v |
+ + —+ v
| Get next character | + + +
| from output ring | | Place character in |
| buffer | | output ring buffer |
+ + + + + +
| l
v v
+ +- + + +— +
| Transmit character | Start transmitter
-t -4 - P . e
) LI) o L L)
l |
v v ;
e + + + : +
| Return from interrupt | Finished
+ + + +

6.3.1 Program level output character processing

Almost all of the processing done on characters being transmitted is performed
at program level: The major character processing operations are summarized
below: ‘

-57-

TT and CL I/0 Processing

1. Check for TSX-Plus terminal control program operations such as
defining a new activation character, setting field width, etc.
(Lead-in character followed by function code.)

2. Optionally perform terminal logging.
3. Optionally expand tabs into spaces.

4. Optionally convert form feed characters into 8 line feeds.

5. If process windowing is turned on, update the contents of the
current window.

6. Place character in output ring buffer.

As each character is processed by the program level routine, it is checked to
see if it is a control character which requires special processing, such as
tab, form feed, and the TSX-Plus lead-in character. Characters are then stored
into the output ring buffer for the line. The default size of output ring
buffers is set by the DOTSPC sysgen parameter or may be set for an individual
line by use of the BUFSIZ macro in TSGEN. If the output ring buffer beconmes
full, the execution of the job is suspended until the number of characters in
the output ring buffer equals the OTRASZ sysgen parameter, at which point the
execution of the job is resumed. As characters are placed in the output ring
buffer, a routine is called to try to start transmission to the line.

In the case of communication controllers such as DH-11 and DHV-11 which support
DMA transmission, an additional routine is called to move characters from the
output ring buffer into linear buffers that are used for the DMA transmission.

6.3.2 Interrupt level output character processing

Since most of the character processing is done at program level, the output
interrupt level routine is very simple. If the output ring buffer is not
empty, the interrupt routine removes the next character from the output ring
buffer and transmits that character. It also checks an output-suspended flag
which is set when an XOFF character is received.

6.4 CL output character processing

Output character processing for CL lines is similar to that for time-sharing
lines. The primary difference is that a separate output ring buffer is used
for CL lines than for time-sharing lines. The default size for the CL output
ring buffers may be set by use of the CLORSZ sysgen parameter or by use of the
BUFSIZ macro in TSGEN. The recommended size for output ring buffers is
((3*baud rate)/1000+3). TFor example, the recommended ring buffer size for a
9600 baud line is ((3*9600)/1000+3) or 32.

-58-

)

Nz

TT and CL I/0 Processing

6.5 Terminal and modem protocols

TSX-Plus provides full support for dial-up lines connected to modems. A line
is declared to be a dial-up line by use of the "$PHONE" flag in the line
definition block in TSGEN. The SET TT n PHONE keyboard command may also be
used. A line which is declared to be a phone line may also be used with a
directly connected terminal.

When experiencing difficulties with terminals or modems, it is important to
keep in mind that several levels of hardware and software are involved. These
include at least: terminal hardware, terminal firmware, cable(s) from terminal
to interface card, interface card hardware, interface card firmware, computer
hardware, and system software.

6.5.1 Interface cards

Under RT-11 the console (operator”s terminal) must be connected through a
DL(V)1l type interface. A serial printer using the LS handler must also use a
DL(V)1l type interface. TSX-Plus supports several types of asynchronous
interface protocols to which you may attach terminals, modems, serial printers,
or other serial devices. These include cards such as: DL11 and DLV11l, which
may support one or more lines and modem control, depending on the version; DZ1ll
and DZV1l multiplexers, which support 4 to 8 lines, depending on version, and
include modem control; DHV1l multiplexers which support 8 lines and include
modem control; and DH1l multiplexers which support 16 lines with optional modem
control. The DH1l1 and DHV11l multiplexers utilize DMA (direct memory access) to
improve terminal output efficiency. Note also that the programming protocols
for DHI1 and DHV1l multiplexers are distinctly different - they must be

declared correctly during system generation.

Nou-DEC vendors also supply interface cards which implement most of these
protocols, but they may vary in implementation of such features as number of
lines supported or optional modem control. The type of interface selected will
vary according to which features you need, number and type of peripherals to be
connected and expense. The DL11 and DLV1l type cards are in most cases not
programmable for features such as speed and parity control, instead being
jumper or switch selectable on the interface card when it is installed. 1In
addition, they utilize separate interrupt vectors for each individual line.

When configuring a system with many terminals, it is difficult to configure the
cards without conflicting with other devices. Remember that no two devices can
share the same interrupt vectors or CSR addresses. Interface card selection is
also influenced by the relative power consumption of the boards. For example
the 4-line DLV11J only draws 1 A from the 5V supply, whereas the 8-line DHV11
draws 4.3 A at 5V (as listed in the Digital Networks and Communications Buyer”s
Guide). The consequences of inadequate or marginal power can lead to errors
which are extremely difficult to reproduce and to diagnose.

The DZ11, DzZV1l, DHl11 and DHV1l type interfaces permit software selection of

features such as speed and parity control. They support multiple terminals
through the same vector and CSR. This enhances the flexibility of configu-

-59-

TT and CL I/0 Processing

ration and use when adding or changing peripherals. However, most serial
device handlers such as LS or specially written handlers support only the DL11
and DLV1l type interfaces.

TSX-Plus includes a special device handler, CL, which supports up to 16 lines
as serial I/0 devices. The CL handler can use any mixture of the interface
types listed above and may be used to connect serial printers through multi-
plexers. The CL handler can replace the standard LS and XL (and XC) device
handlers for most purposes. But if you have special requirements like filler
characters or flow control other than the XON/XOFF protocol, you will probably
need to use a special device handler and a DL1l or DLV1l type interface card.
If you wish to attach a modem, you should ‘also have an interface card which

supports modem control.

6.5.2 Wiring

The connection from the interface card to the peripheral device is most
commonly made according to the EIA RS-232-C standard with DB-25 connectors.
The interface cards themselves usually terminate in DB-25P (male) connectors,
and are considered as DTE (Data Terminal Equipment) devices. (DLV1lJ cards
have 2X5 pin AMP connectors, but are commonly converted with short "pigtail”
cables to a DB-25P connector.) Most terminals are also DTE devices and have
DB-25P connectors. For DEC interface cards, only a few of the 25 pins in these
connectors are significant. The pins significant to TSX-Plus are:

Protective ground

Transmitted data

Received data

Signal ground

Received line signal detector (Carrier detect)
Data terminal ready

Ring indicator

NOoW~NWN -

2
2
When using DEC interface cards and DEC peripherals, protective ground (pin 1)
is usually connected internally to signal ground (pin 7) so there is no need to
wire it through the cable. Since both the interface cards and peripherals are
DTE equipment, there is a slight conflict in definition of the sender and
receiver, resulting in a conflict on pins 2 and 3. When two DTE devices are
connected through modems (modems are DCE devices, Data Communications Equip-
ment), the modems translate the signals and reverse the sense of send and
receive between the two devices so that what one device sends is considered
received data on the other device. However, when the interface card is
directly connected through a simple cable to the peripheral, the send and
receive lines need to be reversed so that transmitted data from one end is
correctly converted to received data at the other end. This type of connection
is usually called a "null modem". DCE devices like modems usually use DB-25S
connectors, so a null modem should also terminate in DB-25S (female) con-
nectors. In the simplest case of connecting a terminal directly through a null
modem cable to the interface card (or panel connector routed to it), only pins
2, 3, and 7 need be connected and 2 and 3 should be reversed at the two ends.
This would look diagrammatically something like:

-60-

N

TT and CL I/0 Processing

Interface Cable Cable
Card End Cable End Terminal
(DB-25P) (DB-25S) (DB-25S) (DB-25P)
2 => >- 2 --\/ 2 < <-2
3> >3 /\ 3 < <3
7 -> > 7 7 < <=7

When actually attaching to a modem or modem—like device such as a line—driver,
the DCE device performs the translation of transmitted data to received data
and pins 2 and 3 should not be reversed. If you are connecting to a device
~which uses modem control (declared to TSX-Plus as a phone line), then pins 8,
20 and 22 should also be wired. An extension cable with 6 wires is then
usually used to connect the interface card or terminal to the modem. This
typically looks like: '

Interface (((
Card or Cable Cable ((((
Terminal End Cable End Modem (((((Phone
(DB-25P) (DB-255) (DB-25P) (DB-258) C(

2 = >- 2 2 = >- 2 ((C
3 -> >-3 3 -> >3

7 = > 7 7 => >- 7

8 -> >- 8 8 -> >- 8

20 => >=20 20 => >-20
22 => >=22 22 => >=-22

Other devices, such as non-DEC terminals or printers, can sometimes have
additional wiring requirements. For example, we worked a long time to correct
a buffer overrun condition on a NEC printer attached to a DHV1l using the CL
handler. There appeared to be some problem with XON/XOFF flow control which
caused CL to send characters when the printer was not ready to accept them,
while the same printer worked correctly with an IBM PC. We finally identified
the additional requirement of the NEC printer to receive a signal on pin 6
(Data Set Ready) before it could transmit. This prevented it from sending XOFF
to the system, resulting in the buffer overruns. This signal was present with
‘the interface and cable used with the IBM PC. The problem was finally remedied
by simply shorting together pins 6 and 20 at the printer end of the cable.
Since CL always raises DTR (Data Terminal Ready, pin 20) for each I/0 oper-
ation, this kept pin 6 high for the NEC, allowing it to transmit an XOFF when
its buffer fills. The object lesson is to fully understand the requirements of
your hardware when dealing with unusual equipment.

6.5.3 Communication parameters

Several parameters control the data transmission format. For DL11 and DLVI1l
type cards, the character formats are selected by jumpers during installation
of the cards. Baud rates are also preset by jumper, except on the DLVI1E for
which programmable baud rates are available, but not character length or
parity. On DZ11l, DZV1l, DHl1l1 and DHV1l type cards, TSX-Plus allows you to
dynamically select: baud rate within the range supported by the card; parity
control of even, odd or none; and 7 or 8 data bits. The most common format for

-61-

TT and CL I/0 Processing

terminals is 9600 baud with 8 data bits and no parity. For hardcopy terminals
such as an LA120, the common settings are 1200 baud with 8 data bits and no

parity control.

6.5.3.1 Character frames: The character format can be conceptualized as a
stream of high and low voltage pulses (representing bits) clustered into
groups, called frames, which represent individual characters. All the devices
supported as terminals or CL units by TSX-Plus are asynchronous, which means
that a new frame is signalled by a start bit and ended with a stop bit, and
that the separation between *frames (characters) may be variable. The baud rate
controls the duration of voltage pulses within each frame; the higher the baud
rate, the less time between individual data bits.

A new frame is always signalled by one start bit. This is followed .by either 7
or 8 data bits representing the character, then an optional parity bit and at
least one stop bit. The number of data bits, parity control and number of stop
bits are selected by jumpers on DL type interface cards. Multiplexer lines may
be set to either 7 or 8 data bits during system generation (default is 8), or
during operation with the SET TT BITS command. Parity may be set to EVEN, ODD
or NONE on multiplexer lines either during system generation (default is NONE),
or during operation with the SET TT PARITY command. TSX-Plus always defaults
to 1 stop bit on multiplexer cards. The number of stop bits is not usually
critical since it effectively controls only the minimum separation between
frames.

6.5.3.2 Parity: Parity control works by counting the number of data bits in
the frame which are a logical 1. If parity is turned off, then no parity bit
is transmitted or it is ignored on receipt. If parity is set EVEN, then the
parity bit will be turned on when the number of logical 1 data bits in the
character is odd and will be turned off when the number of logical 1 data bits
is already even, so that the cumulative count of data and parity bits is even.
The inverse operation is performed for odd parity. TSX-Plus does not support
other parity protocols such as: MARK - parity bit always on; or SPACE - parity
bit always off.

6.5.3.3 Automatic baud rate determination: TSX-Plus permits time sharing lines
to be generated with automatic baud rate detection. That is, the speed of the
terminal does not have to be preselected during system generation, but rather
can be determined by the system by analyzing the first one or two carriage
returns received from the terminal when it first logs on. This is done by
initially setting the inactive line speed to 9600 baud. Then, when the first
carriage return character is typed to activate the line, the character received
by the interface may or may not appear to be a carriage return. If the
terminal is set to 9600 baud, then the character should match and the system
leaves the baud rate set at 9600. If the terminal is not transmitting at 9600
baud, then the bit pattern seen by the interface card will not match a carriage
return. The character apparently received by the interface card is compared
with a table of values which would be received if the terminal were trans-
mitting at some other speed. If a match is found, then the line is set to the
corresponding baud rate. If no match is found, then the speed for that line is

-62-

TT and CL I/0 Processing

set to 600 baud and another carriage return is required. The process is
repeated to match the apparent character with a table of expected values for a
lower range of baud rates. If no match is found with this lower set of baud
rates, then the speed is reset to 9600 baud and characters are ignored for a
er seconds; the process then repeats until one of the allowed baud rates is
selected.

This process can be demonstrated by looking at the input bit pattern for an
ASCII CR (carriage return) character at 9600 and 4800 baud. The diagram below
shows how the signal voltage levels might look on an oscilloscope trace for a
single character frame (ASCII CR) at the two rates. Think of the signal as
flowing in from the 1left and moving out to the right. The inactive line
between character frames is indicated by the dots, usually at the MARK level
(M). The start of the character frame is signalled by a start bit (usually a
SPACE level (S)), followed by high or low levels appropriate for the individual
bits of the character being transmitted, least significant bits first. The
vertical lines indicate the approximate time points at which a device moni-
toring the line at 9600 baud would measure the voltage in both cases. Note
that the character that would appear to be received if the 4800 baud CR were
sampled at the expected timing for a 9600 baud line would be an octal 146 ("f")
instead of 015 for a CR. Other baud rates would generate other apparent
characters, and by matching the current baud rate with a table of these
apparent characters the actual external baud rate can be surmised.

MOO0OO0O1101s ==>0L5CR
Frrrrtd

CECRCEY LRI

- 9600 baud
FTT 11T
I O
- 4800 baud
LT T 11
11001108 ==>146 "f"

6.5.3.4 Break keys: Pressing the break key on a terminal usually generates a
"long space"” condition. When received, this results in a framing error because
the stop bit does not occur within the expected time interval after the start
bit. If the time-sharing line is set for a fixed baud rate or speed has
already been selected on an "autobaud” 1line, then the (NUL) character is
flagged with a framing error and passed through to normal character input
handling. If the line 1is set for autobaud, and speed has not yet been
selected, then it is handled as described in the section on autobaud. What
happens at the computer on receipt of a break also depends on the type of
interface card receiving the character. On multiplexer cards, receipt of a
break character simply sets the framing error flag for the line. On DL type
cards, installation options determine the result of incoming break signals;
when the framing error bit is set it may cause a reboot or cause the processor
to halt. On DLV11-J cards, these options only apply to channel 3, and should
only be enabled when connected to the console terminal. The only effect of

-63-

TT and CL I/O Processing

framing errors on terminal input to TSX-Plus (except as noted for autobaud
detection) is to bypass masking for 7-bit characters and skipping the tests for
XON/XOFF receipt. The (erroneous) character is otherwise simply stored in the
terminal input buffer.

6.5.3.5 7 or 8 data bits

There are two separate levels of data bit control. One level controls the
multiplexer hardware (number of data bits on DL type interfaces is selected by
jumpers at installation) and determines whether the multiplexer will transmit 7
or 8 data bits. This hardware control is selected by the SPEED macro in TSGEN

or dynamically with the SET TT BITS command.

In addition, software masking of characters may also be done, regardless of
whether the hardware is set for 7 or 8 data bits. This is the process of using
only some of the characters which may actually be presented by the hardware.
When 7 bit mode is selected, TSX-Plus clears any incoming eighth bit on
terminal input before passing the character on to the program and masks output
characters to the low 7 bits before sending them to the terminal interface
card. This software masking is selected with the $8BIT option to the FLAGS
macro in TSGEN or by the SET TT [NO]JEIGHTBIT command during execution. Note
that hi-efficiency terminal mode and CL binary mode bypass software 7-bit

masking.

6.5.4 Flow control (XON/XOFF)

You may use almost any standard asynchronous terminal with TSX-Plus. However,
the only flow control method supported is XON/XOFF (DC1/DC3,
Control-Q/Control-S). Filler characters or other protocols such as ETX/ACK are
not supported. Using the XON/XOFF protocol, if the terminal can”t handle
characters sent to it as fast as the computer can transmit them, then it sends
to the computer an XOFF character, which causes the system to stop transmitting
until it sees an XON character. Then, when the terminal empties its internal
buffer and is ready to accept more characters, it sends an XON character to the
system which in turn resumes transmission of characters to the terminal. If
your terminal does not understand XON/XOFF, then buffer overruns are likely
except at very low baud rates. Similarly, if the terminal transmits characters
faster than the system can handle them, the system will send an XOFF to tell
the terminal to stop transmitting, and will send an XON when it is ready to
receive more characters.

In some special circumstances, it may be desirable to disable XON/XOFF
processing by the system, such as when it is necessary for a program to read
one of those two special characters from the terminal or when special circum-
stances dictate that the program handle its own flow control. The $PAGE option
to the FLAGS macro in TSGEN and the SET TT [NO]PAGE command control whether
TSX-Plus uses XON/XOFF flow control. The choice is between XON/XOFF control or
no control. Disabling system XON/XOFF control causes TSX-Plus to treat XON and
XOFF as ordinary control characters. The system does not intercept them, but
rather passes them through to the terminal input buffer. This allows user-
written programs to handle special cases.

—-64~

TT and CL I/0 Processing

6.5.5 Terminals ‘ ‘
TSX-Plus cannot create features which your terminal does not have; for example,
lower case characters are meaningless when using an ASR33 teletype. Other
terminals may or may not understand such characters as TAB or FORM FEED.

These, however, can be simulated to some extent by TSX-Plus. You may use the
SET TT NOFORM and SET TT NOTAB commands to simulate them when necessary.

The SYSMON program, which is currently the only screen oriented utility
supplied with TSX-Plus, can use several terminal types (VT200, VT100, VT52,

ADM3A and HAZELTINE).

The RT-11 KED editor is used with VT100 type terminals or VT200 type in VT100
mode. VT52 terminals should use the similar K52 program. Lower case must be
enabled to use either of these programs since the numeric keypad in alternate
keypad mode generates escape sequences with lower case characters. If the
system translates these to upper case, then the editing programs will not
correctly recognize some keypad commands. When the terminal type is known to
TSX-Plus, it automatically selects the correct program, according to the
terminal type, when either KED or K52 is invoked through the EDIT command.
This means that if you use the commands:

SET TT VT52
SET EDIT KED
EDIT TEST.DAT

Then, the program which is actually run by the system will be K52 to correspond
to the terminal type, rather than KED as requested. If on the other hand, you
explicitly RUN KED, then you will actually execute KED. The system interprets
the EDIT command and selects the appropriate program, but does not override
explicit program selection.

VT200 series terminals may be used either in either VI100 or VT200 mode. When
in VT100 mode, the terminal setup should be VT100 with 7-bit controls. When in

VT200 mode, the terminal setup should use 8 data bits and no parity. Some
VT200 keys behave differently in VT100 and VT200 modes, most notably the F11,

F12, and F13 keys. In VT100 mode, these keys are:

F11 ESC (escape)
F12 BS (back space)
F13 LF (line feed)

However, in VT200 mode, the top row function keys F6 through F20 all generate
four character special ANSI escape sequences. Most programs written for use
with VT100 or VT52 terminals will not recognize these sequences. Using the
TRMTYP VT200 macro in TSGEN or the SET TT VI200 command also automatically sets
the $8BIT flag; unless the terminal itself is also set to 8 data bits and no
parity, it will appear dead. The $8BIT flag is not automatically reset by the
SET TT VT100 command.

-65—-

TT and CL I/0 Processing

6.5.6 Modems

There are many kinds of modems available today, ranging from those with only
the most basic capability to convert between digital signals and acoustic tones
to very sophisticated, "intelligent"” devices. Most modern modems at least have
the features of direct connection to the telephone system and automatic
answering capability. We will not specifically discuss acoustic coupler type
modems as they require a lot of manual intervention.

If TSX-Plus is to handle a line as a modem, then it must be identified as a
phone line either by the S$PHONE option to the FLAGS macro in TSGEN or with the
SET TT PHONE command during system execution. If TSX-Plus is to handle the
modem, then the line must also be connected to an interface card which supports
modem control (most multiplexers do, a DLV1lJ does not), the modem must be
configured to a "standard” auto—answer configuration, and the modem and cable
must support the following signals: R

Pin Signal name

2 Transmitted data

3 Received data

7 Signal ground

8 Carrier detect
20 Data terminal ready
22 Ring indicator

The normal sequence of events for a dial-in phone line is:

1. The phone rings (possibly several times)

2. TSX-Plus detects the ring signal, raises the data terminal ready
line, and starts the OFFTIM and TIMOUT timer

3. When DIR is raised, the modem should answer the phone and establish
a connection with the remote modem, raising the carrier detect
signal when successful

4. When carrier detect is present, TSX-Plus cancels the TIMOUT timer

5. A carriage return is typed at the remote terminal

6. TSX-Plus transmits the greeting message, performs line initiali-
zation, executes the start-up command file(s) (should include
running LOGON), and cancels the OFFTIM timer

7. Normal time-sharing session operations

8. The remote terminal logs off
9. TSX-Plus starts the OFFTIM timer
10. The remote modem hangs up
11. The local modem drops carrier detect
12. TSX-Plus starts the TIMOUT timer
13. When either the OFFTIM or TIMOUT timer elapses, TSX-Plus lowers DTR

14. The local modem hangs up the phone

-66—

TT and CL I/0 Processing

In this normal sequence of events, any time the carrier detect signal is lost,
TSX-Plus starts the TIMOUT timer. If the carrier detect signal is re-
established, then TSX-Plus cancels the TIMOUT timer. If the carrier detect
signal remains lost for the period specified by TIMOUT, then TSX-Plus logs off

the line and lowers DTR which should cause the modem to hang up the phone.
This takes care of the case in which the operator of the remote terminal hangs

up the phone without logging off. The converse case, in which the operator of
the remote terminal logs off but does not hang up the phone, is handled by the
OFFTIM timer. If the line remains logged off, but connected (carrier detect
signal present) longer than the period specified by OFFTIM, then the system
lowers DTR and the modem should hang up the phone. The OFFTIM value also deals
with the case in which someone dials in and is unable to successfully log in
within the specified period. Some trial and error adjustment is wusually
necessary for the TIMOUT and OFFTIM values to account for the timing varia-
bility of the particular interface card, modem and phone system at each

installation.

Even if a line has been declared to TSX-Plus as a phone line, when it first
logs on (first carriage return received on an inactive line), the system will
treat it as a true phone line only if the carrier detect signal is asserted; if
not, then TSX-Plus treats it as a local line and does not perform any of the
modem control functions described above. This is usually the case for an
"intelligent” modem, which answers the phone for itself without regard to the
DIR signal, and does not assert carrier detect to the system or is connected
through an interface which does not support modem control.

If it is necessary to connect a modem to an interface card which does not
support modem control (e.g. DLV11J), then it is necessary to either manually
establish the connection or use an "intelligent" modem which itself takes care
- of monitoring the signal quality (carrier) and answering and hanging up the
phone. Lines connected in this manner may be generated either with or without
the SPHONE flag; TSX-Plus will treat them as local lines in either case and
will not provide any form of modem control, including establishing or monitor-
ing the TIMOUT and OFFTIM telephone security timers.

When using "intelligent" modems, it is important to keep them quiet except for
normal operations. Some modems offer an option of providing information
messages concerning their operation. This can cause futile loops when used
with TSX-Plus. Consider, for example, the following cycle:

1. An incoming call is recognized by the modem which transmits the
message "RING" preceded and followed by carriage return/line feed

combinations.

2. TSX-Plus sees the first carriage return, activates the line,
displays the greeting message, sees no carrier (since the connection
has probably not yet been established) and assumes it is a local
line.

-67-

TT and CL I/0 Processing

3. The modem either then attempts to respond to the greeting message as
a command or TSX-Plus attempts to accept "RING" as a command, which
it normally is not, or if LOGON is running, attempts to use "RING"
as a logon user name, followed by whatever comes in next as the
password. This normally does not match the correct password.

4. Synchronization almost always fails between the informative messages
from the modem and the greeting message. This results in the modem
continually sending "ERROR", "RING", "CONNECT" or other messages to
TSX-Plus, and TSX-Plus continually sends the greeting message, fails
to log the line on, and disconnects the line.

The outcome is that the line repeatedly initiates and runs the LOGON program,
but never successfully logs on. This informative message mode is good when the
modem is connected directly to a terminal, but wreaks havoc with normal modem
operations by TSX-Plus. When using a D.C.Hayes Smartmodem (or compatible
modem), it is normal to enable messages when using it as a dial-out device, but
the default switches should be set to disable messages on power—up (on a Hayes
Smartmodem 1200 for example, switch 3 should be UP) and the modem should always
be reset to the quiet mode before returning the line from a CL "dial-out"
operation to wuse as a time-sharing line. The following example dial-out
session shows how to take over a time-sharing line, connect to it as a virtual
terminal with VICOM, issue Hayes style modem commands, execute a time—sharing
session on the host system, and then return everything to the original state.
Text after an exclamation point and everything in parentheses are comments.
Especially note the modem command to set it to quiet mode (AT Ql), which is
essential for subsequent use of the modem as a "dial-in" time-sharing line.

.SET CL1 LINE=8,SPEED=1200,NOLFOUT ITAKE OVER T-S LINE

.SET SL OFF I'TURN OFF SINGLE LINE EDITOR
.ASSIGN CL1 XL - !ASSIGN FOR VTCOM
.ALLOCATE XL 'EXCLUSIVE USE
.R VTCOM o !CONNECT TT TO XL
AT QO (TURN ON MODEM INFORMATION MESSAGES)
(CR/LF FROM MODEM)
OK (MODEM MESSAGE)

AT DT 19005551212 (MODEM COMMAND DIAL THIS NUMBER)
(CR/LF FROM MODEM)

CONNECT (MODEM MESSAGE)

°G (SINGLE BELL CHARACTER)

?7VICOM-I-Connection established

e (SINGLE BELL CHARACTER)

 -68-

N

TT and CL I/0 Processing

Exemplary VAX/VMS System

Username: USERNAME

Password: PASSWORD

Welcome to VAX/VMS version V4.1
Last interactive login on Wednesday, 1-MAY-1985 12:52

.

. (TIME-SHARING OPERATIONS ON HOST)
$ LOG/BRIEF
USERNAME logged out at 1-MAY-1985 12:56:21.43

?7VTCOM-I-Connection lost

“G"G"G"G (FOUR BELL CHARACTERS)
(CR/LF FROM MODEM)
NO CARRIER (MODEM MESSAGE)
AT H (MODEM COMMAND HANG UP PHONE)
(CR/LF FROM MODEM)
OK (MODEM MESSAGE)
AT Q1 (MODEM COMMAND QUIET #***IMPORTANT#*%*%)
“P (VICOM COMMAND TO COMMAND MODE)
TT::VTCOM> EXIT (VTCOM COMMAND EXIT)
.SET SL ON !TURN SINGLE LINE EDITOR BACK ON
.SET SL KED !SET SL KED MODE
.DEALLOCATE XL !NON-EXCLUSIVE USE
+.DEASSIGN XL !CLEAN UP XL ASSIGN
.SET CL1 LINE=0 !RETURN CL LINE BACK TO T-S USE

Although most "intelligent” modems support the de facto Hayes "standard”, not
all do, and many of those that do, are not completely compatible. They must be

* configured either to conform to the modem control method supported by TSX-Plus

or to handle the telephone themselves without modem control signals from the
system.

A note on using VTCOM: When running VTCOM, the command character to return
VICOM from terminal mode to command mode is a control-P ("P). (Note the use of
“P in the example above.) This is a minor conflict with the console break
character on some computer models (e.g. PDP-11/44). When using VICOM from the
console terminal on such computers, you must set the computer itself into the
"local disable"” mode. Otherwise, hardware ODT will intercept the “P character
and begin ODT execution on the console rather than pass the “P through to the
VICOM program. This is not a problem on terminals other than the console.

-69-

TT and CL I/0 Processing

6.5.7 TSX-Plus system generation of terminal lines ,

The configuration of time-sharing lines for TSX-Plus is done by including
certain declarations near the end of the user-modifiable section of TSGEN.MAC.
Macro operators are provided to handle most of the work. Remember that
information on any line to the right of a semicolon (";") is ignored by the
MACRO assembler. 1In other words, lines which begin with a ";" are treated as
comments. The assembler also treats numbers as octal values unless the radix
is specifically changed (we do not ever do that in TSGEN) or the number is
followed by a decimal point ("."). Except for vector and address values, we
recommend that you use a decimal point for most numbers unless you are in the
habit of thinking in base & (octal). This applies in particular in the
time-sharing line definition section in the DZDEF, DHDEF, DHVDEF and LINDEF
macros. By convention, vectors and CSR addresses should always be specified as
octal values. Referring to them in any other way will only lead to confusion

and error. Port numbers on a multiplexer should be specified as decimal values
(e.g. 0. thru 15.).

6.5.7.1 TBLDEF: The TBLDEF macro declares the number of primary time—sharing
lines (physical terminals) which will be attached to the system, the number of
subprocesses (virtual jobs which are secondary to some primary line - use the
same terminal), the number of detached jobs (jobs which run independently of
any terminal), and the number of dedicated CL lines (lines which will only be
used as I/0 devices and never used as a terminal). The number of primary lines
(first TBLDEF parameter) MUST correspond to the number of LINDEF macros which
follow. The maximum number of jobs possible in a given system is determined by
the total of the first three parameters (primary+detached+subprocess). Jobs
are identified during system operation based on these numbers. Primary jobs
are numbered from 1 to the number of primary lines. Detached jobs (both active
and unused) are numbered next, followed by subprocesses. The SYSTAT (or WHO or
SHOW JOBS) command identifies jobs according to these numbers. The SHOW TERM
command only displays primary lines. The parameters to TBLDEF should be
decimal numbers. For example:

TBLDEF 11.,2.,3.,0.

declares eleven primary time-sharing lines which will be numbered 1 thru 11,
two virtual job slots which will be numbered 15 and 16, and three detached job
slots which will be numbered 12 thru 14. No dedicated CL lines are reserved.
Dedicated CL lines are generally used for printers, plotters and similar
devices which are read and written by jobs on other lines and do not need to
act as terminals. If these devices are attached to DL(V)1l type interface
cards, then they might well be serviced by an LS handler. If they must be
attached through multiplexer ports (DZ, DH or DHV) then they must be used
through the CL system. Note that the CL pseudo-device is NEVER declared in the
device definition section of TSGEN. (Neither TT nor LD is declared with a
DEVDEF either.)

-70-

N

TT and CL I/0 Processing

6.5.7.2 Multiplexer definitions (DZDEF, DHDEF and DHVDEF): These are used to
define DZ(V)1l and DH1l and DHV11l multiplexer devices. These macros accept
vector and CSR addresses which are octal numbers. (The old MUXDEF macro is
equivalent to DZDEF.) Some vendors supply multiplexers which are compatible
with either DH or DHV protocols (which are significantly different from each
other). You must select the correct multiplexer definition macro according to

the protocol option enabled with the hardware.

6.5.7.3 LINDEF: On DL(V)ll interfaces, this macro requires the port vector and
CSR address. Within multiplexer definition blocks, this macro requires only
the port number. Multiplexer ports are numbered from O to the number of ports
supported by the device, up to a maximum limit for each device. Per vector and
CSR pair: the DZV1l supports 4 ports; the DZ1ll supports 8 ports; the DHV11
supports 8 ports; and the DHl1l supports 16 ports. Other vendors may permit one
multiplexer to support more than these numbers of ports, but TSX-Plus con-
strains the multiplexer definitions to certain upper limits. That is, you may
specify multiplexer port numbers to the LINDEF macro within the following
limits (remember to either use decimal points or think octal):

Multiplexer Port
Definition Numbers

DZDEF 0. - 7.
DHDEF 0. - 15.
DHVDEF 0. - 7.
DHUDEF 0. - 15.

Remember that the total number of LINDEF macros (both DL(V)1ll type and within
multiplexer definition blocks) must add up to the number of primary lines
declared with the TBLDEF macro (first parameter).

Also remember when specifying vectors and addresses for DL(V)lls and multi-
plexers, that you must not have a device handler which uses the same vector or
address. In fact, it is a general rule that no two device interfaces (whether
they be time-sharing 1lines, printers, plotters, modems, disk drives, or any
other device) can share the same vector and CSR address. This is a common
mistake when a DL(V)ll port is to be used with VICOM. VTCOM uses the XL device
which communicates through a serial port. It is acceptable to use XL with
VICOM under TSX-Plus; you should then include a device definition (DEVDEF) for
XL, but then no time-sharing line may also use that port. Note also that XL

can only be used on a DL(V)ll type port. If a port is to be used sometimes as
a time-sharing line and sometimes as a communications line with VICOM, then

-71-

TT and CL I/0 Processing

1. declare it as a normal time-sharing line (possibly with the $PHONE
flag);

. do NOT include the XL device handler;

. include at least 1 CLXTRA line;

. do NOT declare a device definition for CL;

. do NOT declare the port as a dedicated CL line (CLDEF).

(S, I~ VLR V]

Several other macros may be used within a line definition block, such as FLAGS,
SPEED, and TRMIYP. These and others are described in the TSX-Plus Installation
Guide. (Note that most terminals use XON/XOFF control and should have the
SPAGE flag set either in their unique FLAGS macro or in NRMFLG.)

6.5.7.4 LINEND and MUXEND: For each LINDEF, there must be a corresponding
LINEND. For each DZDEF, DHDEF, or DHVDEF, there must be a corresponding
MUXEND. Failure to observe these rules will probably result in an error during
assembly of TSGEN.MAC. Failure to match the number of LINDEFs with the number
of primary lines declared as the first parameter to TBLDEF may result in an
"Invalid status register address for T/S line:" error message during start-up
of TSX-Plus.

6.5.8 Troubleshooting :

When communication trouble occurs with terminals or modems, several approaches
can provide insight to the origin of the problem. Don"t overlook the obvious:
Is it plugged in? It is not uncommon to suffer much exasperation only to
discover that a cable is not securely connected.

6.5.8.1 A note about hardware addresses: Device addresses are always specified
in TSGEN as 16-bit virtual addresses. By convention, they are always specified
as octal values. Due to the virtual system address mapping, device virtual
addresses will always be in the range 160000 to 177776. This 8Kb range of
virtual addresses is referred to as the 1I/0 page. The actual physical
addresses which encompass the I/0 page depend on your computer. If your
machine can only address 64Kb of memory (l6-bit addressing), then the I/0 page
will be in physical addresses 160000-177777. (However, you cannot use TSX-Plus
on a machine that only supports 16-bit addressing.) If your computer supports
18-bit addressing, then the physical addresses of the I/0 page are from 776000
to 777777. The PDP-11/34 and LSI-11/23 (not PDP-11/23-PLUS) are typical 18-bit
machines. Newer machines such as the PDP-11/23-PLUS, LSI-11/73, PDP-11/24
(with PAX option), PDP-11/44, and PDP-11/84 support 22-bit addressing. The
physical addresses of the I/O page on 22-bit machines are in the range
17776000-17777777. When using ODT to address locations in the I/0 page you
must specify physical addresses as appropriate for your hardware.

6.5.9 Unknown configurations: One of the most common errors when interfacing
terminals is not knowing the correct CSR and vector addresses at which the card
was configured when it was installed. A second common error is to use the same
CSR and/or vector for two different pieces of equipment, e.g. both a terminal
and a printer. This mistake is most frequently made on DL(V)1l type inter-
faces, since they are commonly used for both serial printers and terminals.

-72~

N

N

TT and CL I/0 Processing

Determining the correct CSR and vector is best done at the time of instal-
lation. The configuration information should then be recorded where it can be
conveniently found for later reference. 1In fact, a blank form is provided as
an appendix to the TSX-Plus Installation Guide for recording device interface
information.

If the addresses were not recorded during installation or have since been lost,
the second best method of determining the configuration information is removing
the card and comparing the jumpers or switches with the installation and

configuration instructions.

Finally, if you think you know the CSR but are not sure, or if you are willing
to do some hunting by trial and error, then you can use the hardware ODT on
most machines to test the address. '

6.5.9.1 Using ODT: On Q-bus machines, examining an address in the I/0 page

will return a value only if some installed hardware responds to that address,
otherwise it will return with a question mark. For DL type cards, you can
deposit values into the XBUF (transmitter data buffer). If everything is wired
correctly, the value will be transmitted to the terminal and should display on
its screen. Depending on your machine, you may need to use either 18-bit or
22-bit addresses to access the I/0 page. This method can be tested with the
console terminal interface on almost all machines.

The logical structure for control of and I/O0 to a DL type interface card
(including the console terminal) is four words located in the I/0 page for each
device. These are:

RCSR (Receiver Control & Status Register) Base address
RBUF (Receiver data BUFfer) Base + 2
XCSR (Transmitter Control & Status Register) Base + 4
XBUF (Transmitter data BUFfer) Base + 6

The address at which the device is configured is the base address. .This is
also the address of the RCSR for the device and the octal value of this address
always ends with a O. That is, the base address is always a multiple of 10
(octal). Some common base addresses for DL type cards are: 177560 (console
terminal), 176500 (default serial printer), 176510, 176520, 176530, 175610. 1In
order to determine whether a card is configured at a given address, first try
to examine the base address. If it responds (gives a value rather than a "?"),
then try to send a character through the XBUF, where XBUF equals RCSR plus 6,
to the terminal attached to it. If the terminal displays the character put in
the XBUF, then that is the correct base address for that interface card or
port. If not, then

the terminal is attached to a different interface card or port;
the terminal is not correctly wired to the interface card;

the baud rate or parity is incorrect;

the port is defective;

S~ =

-73-

TT and CL I/O Processing

5. the terminal is defective.
If a garbled character shows up on the terminal, then the baud rate or parity
is probably mismatched between the terminal and the interface card.

For example on a PDP-11/23-PLUS (with 18-bit ODT):

*777560/000100 (SEE IF CONSOLE RCSR RESPONDS)
*777566/000000 101 (TRANSMIT CAPITOL "A" TO CONSOLE)
*777566/000000 7 (TRANSMIT "BELL" TO CONSOLE)
*777570/ (TEST NON-EXISTENT HARDWARE)

?

*

On a MicroPDP-11/73 (with 22-bit ODT):

*17777560/000100 (SEE IF CONSOLE RCSR RESPONDS)
*17777566/000000 101 (TRANSMIT CAPITOL "A" TO CONSOLE)
*17777566/000000 7 (TRANSMIT "BELL" TO CONSOLE)
*17777570/ (TEST NON-EXISTENT HARDWARE)

?

*

The ODT interface looks slightly different on some other machines, such as old
PDP-11/34"s on which you may have to operate through the front panel. Once you
demonstrate that you can use the ODT to read and transmit to the console, you
can use the same technique with different addresses to test the presence of the
interface card you are interested in and try to send characters through the
XBUF if it is a DL type card.

If your problem is with a multiplexer interface card (DZ, DZV, DH or DHV), then
you can test the presence of the device”s base address, but it is usually not
worth the effort to try to manipulate the registers to transmit a character to
a specific port. This is much more easily done with a program designed to use
or test the specific type of multiplexer port. (TSX-Plus is generally quite
effective at exercising these type of multiplexers.)

Determination of the vector at which a card is configured is not as simple as
testing the base address (CSR). If the vector is not known from installation
or from examination of the card, then you can generate a line definition block
(LINDEF) for the device with a guess at the vector (but do not use a vector
known to be used by another device). If you are lucky, then your guess will be
correct and a terminal attached to the port will behave correctly. If not,
then sending a character from the terminal will cause the following error:

?TSX-F-Fatal system error
UEI-Interrupt occurred at unexpected location

(Be sure that the TSGEN parameter UXIFLG is set to 1, or TSX will ignore

unexpected interrupts.) The argument value which follows the error message is
the vector selected in the card”s hardware. Go back and correct your LINDEF

~T74—

SN

TT and CL I/0 Processing

and regenerate TSX-Plus. This method only works if the cards RCSR interrupt
bit is enabled. TSX-Plus does this for you if the CSR is correctly specified
in the LINDEF, otherwise you will have to go back and set it yourself using
hardware ODT. Input interrupts are usually enabled by loading a 100 into the

board”s CSR address. To enable input interrupts, put a 100 in the CSR (same as
base address on a DL or DZ type card). For example:

*776510/000000 100 (ENABLE INTERRUPTS ON DLV11J CHANNEL 1)
(TOGGLE HALT SWITCH TO "RUN")
*Pp (ODT PROCEED COMMAND)

(TYPE A CHARACTER AT TERMINAL ON CHANNEL 1)
?TSX-F-Fatal system error at 23626
UEI-Unexpected interrupt
Arg. value = 310

The argument value will be the vector through which the device interrupted.

When dealing with multi-port interface cards, always be sure your terminal is
actually plugged in to the port number you want. Some cards have the ports
numbered left to right, some are numbered the opposite direction. Some cards
have the ports brought out in two groups of four so you have both left/right
and two banks to choose from. If the ports are not correctly or clearly
marked, then trial and error may be necessary to determine the actual port
numbering. For multi-port interface cards, it sometimes can be simplest to
generate your TSX-Plus system to include all the ports on that interface card
in your line definition blocks, then plug a terminal into one of the ports, hit
return, log on, and use the SHOW TERMINALS command to see to which port it is
attached. Note that multiplexer port numbers for the LINDEF macro in TSGEN may
be from O to 3 for a DZV1l, O to 7 for a DZ1l, O to 7 for a DHV1l, and O to 15
for a DHl11. If you use a DZV1l with 4 ports, include a DZDEF in TSGEN, and
specify a LINDEF 4, then you will never get any errors, but neither will you
ever be able to use the line since there is no #4 port on a DZV1l.

6.5.9.2 Replace the device: When problems arise with a particular device, try
replacing it with a different device to see if it makes any difference. If it
does, then determine what different characteristics that device has and correct
the problem. For example, when a dial-out modem connected to a CL line does
not seem to respond, attach a terminal to the line in place of the modem. Can
you send data through the CL line to the terminal? (Be sure the terminal baud
rate is set correctly. You will also probably need a null modem cable.)

6.5.9.3 Break-out boxes: One of the most helpful and inexpensive tools
available to solve wiring and cable problems is a device called a "break-out
box" or "signal activity monitor”. These are devices with DB-25 connectors and

indicator lights which monitor some or all of the RS-232-C signals. Many modem
problems are easily solved in a few seconds when you have the ability to
monitor the signals passed between the modem and the interface card, easily
justifying the cost of some type of RS-232-C signal monitor. These devices are
particularly useful for watching the ring, DTR, and carrier detect signals when
interfacing a modem, for checking cable continuity (Is it broken?), and for

-75-

TT and CL I/0 Processing

determining when a null modem cable is necessary. They are available from m%st
computer supplies companies through a wide range of price and capability. Most
needs can be satisfied with the simplest devices in the $40 to $100 range
Examples are: Micro Peeper from Global ($60); Line Status Indicator from Jade
($40); Easy-Cabler from Misco ($100); or Quick Test from Black Box ($50).

Assuming the signal monitor is attached to a terminal or printer as the test
device, then typing or printing text from the computer to the peripheral should
modulate the received data line (pin 3) and typing characters at the terminal
should modulate the transmitted data line (pin 2). If transmissions from both
the computer and the terminal cause the same indicator to light, then you
probably need a null-modem cable to reverse pins 2 and 3. Some test devices
even incorporate a normal vs. null modem switch to instantly verify the need
for inverting the wiring. If TSX-Plus refuses to treat an incoming modem line
as a "phone” line, see if the carrier detect signal (pin 8) is raised when the
line logs on. If not, TSX-Plus will treat it as a local line and neither
manipulate the DTR signal nor use the TIMOUT and OFFTIM timers. If TSX-Plus
never answers an incoming call, see if the modem passes the ring signal (pin
22) through to the interface card. (Remember, the card must also support modem
control.)

6.5.10 References

Many sources of information are available to aid in understanding data
communications. However, most references either present much more than you
ever wanted to know or not enough to be of any use. The following are among
the more usable:

Technical Reference section of the Black Box catalog.
RS-232 Made Easy, Martin D. Seyer (1984) Prentice-Hall.

Technical Aspects of Data Communications, John E. McNamara
(1978) Digital Press.

-76-

NS

7. SYSTEM OPERATION

This chapter presents an overview of the TSX-Plus system organization and
operation. It is intended to provide background information for users who want
to know more about the internal system organization and operation.

7.1 Memory organization

Memory is organized into two major divisions: memory used by the operating
system and memory available for user programs. The memory required by the
operating system is permanently allocated and contains both code regions and
data structures reserved for its exclusive use. 1In contrast, the content of
user memory changes frequently as different jobs are swapped in and out of
memory. Associated with each job, the system maintains a 6K byte job context
region. Job swapping only occurs when a user job needs service and there is
not enough contiguous free memory to load it and its job context region. Job
swapping may be disabled entirely as a system generation option. In this case,
a new job can only be started when sufficient user memory is already available.

7.1.1 System memory mapping

The operating system is divided into four distinct regions: kernel root,
system overlays, mapped data, and the I/0O page. The kernel root is mapped
‘using kernel PARs (page address registers) O through 4. Because of this, the
kernel root code region is restricted to a maximum of 40K bytes. (Each PAR
maps 8K bytes.) The I/0 page is mapped through kernel PAR 7.

Each system overlay code region and mapped device handler is accessed through

kernel PAR 5 and is therefore restricted in size to a maximum of 8K bytes.
Only one memory resident overlay or handler code region may be mapped at a
time.

Each mapped data region is an individual storage area mapped through kernel PAR
6. Because of this, each data region is restricted in size to a maximum of 8K
bytes. Only one data region may be accessed at a time.

The following diagram illustrates the virtual address organization of TSX-Plus
during execution.

-77-

System Operation

Virtual Memory in the TSX-Plus Kernel

+ + 177777
| I1/0 Page |

+ + 160000
| Mapped Data Regions '

+ + 140000
I System Overlay or l

| Mapped Handler Regions |

+- + 120000
l |

l I

| Kernel Root Code |

J and Data Region }

I I

+ + 0

7.1.1.1 Kernel root: The kernel root contains: device handler wvectors

(located from zero to octal 500); the memory resident overlay handler and
tables necessary for interfacing to overlay code sections; data tables
allocated in TSGEN; executive code including the job execution scheduler; I/0
related processing code; clock and terminal interrupt entry code; startup
initialization code; generalized data cache code (optional); and shared file
record locking code (optional). To conserve space, TSX-Plus re-uses the memory
containing the startup initialization code by loading the optional generalized
data cache code and the shared file record locking code over the initialization
code once the initialization is complete. Data structures which do not require
initialization are also allocated over the initialization code. If additional
space is necessary, the top of TSX-Plus is extended. Ummapped device handlers
are loaded above these data structures. The size of the entire kernel root
region described here (including unmapped device handlers) must not exceed 40K
bytes.

7.1.1.2 System overlay and mapped handler regions: There are currently 21
memory resident overlay code regions. They are separated logically by
function. Since only one overlay code region may be mapped at a time this
functional separation reduces the number of calls to the overlay handler.
Thirteen of the overlay code regions are optional and will only be loaded if
the feature is selected in TSGEN. The functions performed by the overlay code
regions are:

-78-

System Operation

1. Terminal input and output operations

2. Programmed EMT requests code

3. Directory manipulation requests and
directory cache buffers

4. Miscellaneous executive functions such as

clock processing and fatal error processing

5. * Job swapping

6. * Program logical address space requests (PLAS)
7. * Device spooling with buffers

8. * Shared file record locking

9. * Message communication

10. * Real-time service requests

11. * Mapped 1/0 servicing

12. * Single line editor

13. * Communication line (CL) handler
14. * TUser program debugger

15. * Process windowing

16. * System crash dump generation
17. * Generalized data cache

* Denotes optional overlays that are only loaded into memory if the corres-
ponding feature is selected during system generation.

The number of mapped handlers will depend on the device declarations (DEVDEF)
in TSGEN and the corresponding attributes declared or imposed by the initiali-
zation routine for each device handler.

7.1.1.3 Mapped data regions: The mapped data regions allocated during startup

contain the memory map table; the terminal input and output character buffers,
and the following optional buffers: shared data cache buffers, mapped I/0
buffers, performance monitor buffers, generalized data cache buffers, shared
file record locking tables.

7.1.1.4 Shared run—-time systems: In addition to the system regions described,
a reserved memory region, also pre—allocated by the system, contains user-—
defined shared run—-time systems such as those provided with COBOL-Plus and DBL.

7.1.2 Physical layout of TSX-Plus

The kernel root begins at physical memory address zero. Its size is variable,
depending on options selected during system generation, and may extend up to
40K bytes. All of the mapped data regions are allocated directly above the
kernel root with the exception of the generalized data cache buffers which are
allocated directly below the system overlay regions and any optional shared
run—-times. The system overlay regions are allocated at the top of physical
memory, or at the top selected by the MEMSIZ parameter if not all physical
memory is to be used by the system. For example, some portion of memory may be
reserved for use by a memory based disk emulator such as VM. Shared run-time
systems, if any, are loaded directly below the system overlay regions as are
mapped device handlers. Data buffers used by the generalized data caching
facility are allocated below any mapped device handlers. Finally, all the

-79-

System Operation

physical memory between the two memory areas allocated by the operating system

is available for time-sharing users. The following diagram depicts the
physical memory allocation of TSX-Plus during execution:

-80-

N

Physical Memory Use by TSX-Plus

I/0 Page

l-F-—-]»-
1+ — +

1]
t

VM Pseudo-disk Data Area
(optional)

System Overlay Regions
(some optional)

Shared Run—-Times
(optional)

Mapped Device Handlers

Generalized Cache Buffers
(optional)

t—_t —t—+———4 —— 4+ ——+
-ttt —t—-—+t+——+ —— +

User Job Region

—+ —

Performance Monitor Buffer
(optional)

Mapped I/0 Buffers
(optional)

Terminal I/0 Buffers

Shared File Cache Buffers
(optional)

Memory Map Table

Unmapped Device Handlers
Initialization Code
Executive Code

TSGEN

Overlay Tables

Interrupt Vectors

b———— - — —— F—F+——F —— + — 2

t——————t—t——t =t 1

-81~-

System Operation

Top of physical memory

Top of TSX-Plus (MEMSIZ)

Maximum 4OKb

Physical 0

System Operation

7.1.3 User memory

The user”s job region, sandwiched between memory used for the operating system,
is allocated dynamically, placing each user”s job in the first available free
memory area large enough to contain it. 1In a swapping system, each job can
potentially be positioned anywhere within the region. A 4K byte job context
region is appended immediately below each job image, allowing the job and its
context region to be swapped together.

The virtual address space of each job is intrinsically limited to 64K bytes by
the PDP-11 architecture, although the job may remap itself by use of real-time
or shared run-time EMTs. In addition, each job may request and be granted more
physical space by use of PLAS requests. These extended memory regions may be
used for virtual overlays or virtual arrays and need not be contiguous with the
job”s base image. When an extended job is swapped, the PLAS regions are
swapped into a disk file separate from the base image.

7.2 I/0 mapping

I1/0 mapping is a facility which allows DMA devices with 18-bit controllers or
device handlers to be used with Q-bus systems with 22-bit address space.

‘'The original LSI Q-bus used with 11/23 systems had 18 address lines allowing
I1/0 transfers to take place within 248K bytes of memory. Device controllers
developed during this period supported 18 address bits. With the introduction
of the 11/23-Plus processor, four additional address bits were added to the
Q-bus bringing the total to 22 address bits which allowed I/0 transfers to take
place to 4M bytes of memory. Unfortunately, many sites still have older device
controllers that only support 18 bits and, in fact, DEC still does not build a
Q-bus DY (RX02) controller that supports 22 bit DMA transfers. The 18-bit
controllers will operate satisfactorily with 22-bit Q-bus systems provided that
the I/0 transfer is always within the lower 248K bytes of memory. This could
cause problems with TSX-Plus since jobs may be located anywhere in physical
memory and I/0 transfers are normally done directly to buffers located in the

job region.

The I/0 mapping facility causes the system to "map" I/0O transfers through
system buffers that are always located in the lower 248K bytes of memory. This
facility may be specified selectively for those DMA devices that only have
18-bit controllers or device handlers. The "MAPIO" option for the DEVDEF macro
is used to indicate that I/0 mapping should be done for a device. Devices
which support 22-bit addressing and have device handlers which will execute
'22-bit DMA transfers do not need system buffering and can operate normally.
See the TSX-Plus Installation Guide for information pertaining to device
handlers which support 22-bit DMA.

When I/0 mapping is selected for a device, TSX-Plus examines each I/0 operation
directed to the device and if the buffer is outside of the lower 248K bytes it
moves the data from the user”s buffer to/from a system buffer located in the
lower 248Kb memory area and performs the actual data transfer from the system
buffer to/from the I/0 device. This allows 18-bit devices to be accessed by

-82-

N

System Operation

all time-sharing jobs regardless of their location in physical memory.
However, it introduces a significant speed penalty since the data must be moved
between the system buffer and the buffer in the job space. A further speed
penalty is introduced in cases in which the amount of data being transferred is
larger than the system buffer. In this case, an I/0 operation which would
normally be accomplished as a single transfer will be broken down into a series
of smaller transfers. When a large operation is broken down into a series of
smaller operations time is lost waiting for the device to reposition itself for
the start of the next operation. This speed penalty can be minimized by
allocating a large enough system buffer to accommodate most I/0 transfers as a
single operation. The generalized data caching facility can also significantly
overcome the speed penalty since data read from the cache does not have to be

mapped.

7.3 Job scheduling

TSX-Plus uses a unique Adaptive Scheduling Algorithm (tm) (patent pending)
which schedules jobs for execution based on two factors: (1) the value of a
user—assigned job priority that may range from O to 127; and (2) the execution
state of the job.

7.3.1 Job priorities

Job priority values are arranged in three groups: the fixed-low-priority group
consists of priority values from O up to the value specified by the PRILOW
sysgen parameter; the fixed-high-priority group ranges from the value specified
for the PRIHI sysgen parameter up to 127; the middle priority group ranges from
(PRILOW+1l) to (PRIHI-1). The following diagram illustrates the priority
groups:

-83-

System Operation

127 -=>| |
| Fixed |
I high I
| priorities |
PRIHI -->| I
| I
l Normal |
PRIDEF -->| interactive |
| priorities |
l I
+ +
PRILOW —=>| |
| Fixed |
| low |
| priorities |
0 -=>] I
+ +

7.3.1.1 Fixed priority jobs: Job scheduling is performed differently for jobs
in the fixed-high-priority and fixed-low-priority groups than for jobs with
normal interactive priorities. Jobs with priorities in the fixed-low-priority
group (0 to PRILOW) and the fixed-high-priority group (PRIHI to 127) execute at
fixed priority values. That is, the priority absolutely controls the sched-
uling of the job for execution relative to other jobs. The job state does not
influence the execution scheduling except as to whether the job is in a
ready-to-run state or a wait state. A job with a fixed priority is allowed to
execute as long as it wishes until a higher priority job becomes active. Jobs
having identical fixed priorities are scheduled on a round-robin basis at rates
determined by the QUANO and QUAN3 parameters.

The fixed-high-priority group is intended for use by real-time programs. See
the chapter on real-time program support in the TSX-Plus Reference Manual. The
fixed-low-priority group is intended for use by very low priority background
tasks. Normal time-sharing jobs should not be assigned priorities in either of
the fixed priority groups.

7.3.1.2 Normal priority jobs: The middle group of priorities from (PRILOW+1)
to (PRIHI-1) are intended to be used by normal, interactive, time-sharing jobs.
Jobs with these assigned priorities are scheduled in a more sophisticated
manner than the fixed-priority jobs. In addition to the assigned priority,
external events such as terminal input completion, I/O completion, and timer
quantum expiration play a role in determining the effective scheduling
priority. For these jobs the job state is the primary factor in determining
execution scheduling and the user-assigned job priority only influences the
scheduling of jobs in the same state.

-84~

System Operation

For most situations, the best strategy is to assign a single priority in the
middle of the interactive job priority group to all interactive jobs and
reserve the fixed priority groups for real-time or very low priority jobs. The
default job priority is specified by the PRIDEF sysgen parameter.

When a job with a normal priority switches to a subprocess, the priority of the
disconnected process is reduced by the amount specified by the PRIVIR sysgen
parameter. This causes jobs that are not connected to terminals to execute at
a lower priority than jobs that are. This priority reduction does not apply to
jobs with priorities in the fixed-high-priority group or the fixed-low-priority
group. Priority reduction is also constrained so that the priority will never
be reduced below the value of (PRILOW+1).

7.3.2 Execution states

TSX-Plus assigns each job a "state" based on actions taken by the job, and
external events such as I/0 interrupts and timed interval expirations. These
states can be grouped into six categories as illustrated by the following
diagram:

+

Fixed high priority Highest priority

Interactive

Non—interactive
wait completion

!

+

|

+

l

I

~+
Non—-interactive |
compute bound |
+

l

+

!

l

+

Fixed low priority

B p—

Wait states

(non—-executable) Lowest priority

.
T
-4
T
.
T
4

1
3
T
4
T
4
1

7.3.2.1 Wait states: Currently, there are seventeen states to identify jobs
waiting for events or resources. These jobs are in non-executable states.
When a particular event occurs or resource becomes available, the jobs waiting
for these events or resources are readily identified by their wait state and

are scheduled for execution.

7.3.2.2 Executable states: There are 10 executable job states which can be
grouped into five categories: (1) fixed-high-priority; (2) interactive; (3)
non-interactive wait completion; (4) non-interactive compute bound; and (5)
fixed-low-priority. Jobs that have user—assigned priorities greater than or
equal to PRIHI are always in either a wait state or in the fixed-high-priority
state. They are never assigned one of the other executable states. Similarly,
jobs with user—assigned priorities less than or equal to PRILOW are always in
either a wait state or the fixed-low-priority state. Jobs with priorities

-85—-

System Operation

between (PRILOW+l) and (PRIHI-1) are in one of the states: interactive,
non-interactive wait completion, non-interactive compute bound, or wait.

The job scheduler gives preference to interactive jobs to provide rapid
terminal response. Each time a job accepts a character from the terminal the
job is classified as "interactive" and the following actions are taken:

1. The job is placed in the highest priority state within the inter-
active state group.

2. A system timer is started for the job.
3. The I/0 count for the job is set to zero.

The job remains in the highest priority interactive state until it either has
executed for QUANIC units of time or performs an I/0 operation. At that time,
the job is rescheduled into the next lower execution state in the interactive
group (interactive-CPU). On return from an I/O operation (during which the job
was probably in an I/O wait state) an interactive job is placed in the
interactive-CPU state. Interactive jobs which accumulate a total of QUAN1
units of time or which perform more than INTIOC I/0 operations are reclassified
as non-interactive and placed in the non-interactive compute bound state.

Non—interactive jobs normally execute in the non-interactive compute bound
state. Whenever a non-interactive job waits on a resource (such as an I/0
operation), the job is placed in a wait state. On completion of the wait
condition, the job is placed in a non—interactive wait completion state for a
short period of time. The wait completion state has a higher priority than the
normal non-interactive compute state but lower priority than any of the
- interactive states. The job remains in the wait completion state until it
reenters a wait state or executes for QUANIA units of time at which point it is
placed back in the non-interactive compute bound state.

The only way that a non—interactive job can move back into one of the inter-
active states is by receiving input from the terminal.

The diagram on the following page illustrates how time-slice parameters and
external events affect job state transitions.

86

+ T e e . . ——_ —— e — e — e — e <+

Interactive States

System Operation

I
" Interactive High Priority h I
+ —+ |
e —_— | |
I p——— | v |
~ ~ QUANIC |
~ ~ |
[| |
+ —+ |
| Terminal
] Input Done
=1
Interactive CPU Bound
} /L_\ |
. | |
I e T -~ v | Interactive
~ ~ QUAN1B | I/0
- ~ [Completion
| = m e e e oo ! !
’) |
N
| INTIOC
| NO xceeded
v
QUAN1 YES
Non-Interactive States
+ -+-——+
: —
Non-Interactive High Priority,
|+ + |
| | = === - = = - - - - - | | Non-interactive
| i | v I /f 1/0
| ~ ~ QUAN1A | Completion
|- -~ l
Rt eeielelet | |
| & | HIPRCT
| | NO\Exceeded
: Non-Interactive CPU Bound ;
N T I l YES
| Jesoommmm oo oo | |
|~ ~ QUAN2 I
|- ~ l
| lmmmm e e e | |
| &=
| | Y,
| I

System Operation

7.3.3 Job scheduling algorithm

The job scheduler selects which job to run based on the job states and
user-assigned job priorities. The scheduling priority of a job is determined
primarily by the priority of the job state and secondarily by the user—-assigned
priority. In the case of equal state and priority, jobs are scheduled on a
first queued - first executed basis. Fixed-high-priority jobs and fixed-low-
priority jobs are scheduled solely on the basis of the user-assigned priority
value.

The scheduler selects the job to be executed according to the following steps:

1. Select the job in the highest priority state that has the highest
user—assigned priority.

2. If this job is not in memory, bypass it and search the job queue in order

A of decreasing state priority and, within a state, decreasing user—assigned

priority looking for a job that is in an executable state and in memory.

If there are no jobs in memory in an executable state, then no job is

executed until some job enters an executable state or an executable job is
swapped into memory.

3. Run the job wuntil: a) the job enters a wait state; b) the allotted
time—-slice expires; or c) a higher priority job becomes executable.

a) If the job enters a wait state, remove it from its current queue
position and place it in the appropriate wait state queue.

b) If the allotted time-slice has expired, remove the job from its
current queue position and reposition it in the queue based on (1)
the priority of its state, and (2) the value of the user—-assigned
priority. The job is placed behind any other jobs that have the same
state and priority. (Note: the quantum expiration may cause the job
state to change to a lower-priority state.)

c) If an external event interrupts an executing job before it either
enters a wait state or its time—slice expires, then leave the job in

its current state and queue position, but execute the higher priority
job. When the interrupted job is resumed, continue its time-slice

with the unused remainder of its previous time-slice parameters.

-88-

System Operation

7.4 Job swapping

The role of the job swapper is to keep in memory the highest priority jobs that
are in an executable state. '

A job swap is initiated when the following three conditions occur together:
1) A job is in an executable state and is swapped out of memory.

2) There is insufficient contiguous free memory space available for the
job.

3) There is a job in memory with a lower priority executable state than
the out-of-memory job.

Note that the wait states have a lower priority than any executable state.
When a job swap becomes necessary, the job with the highest priority executable
state that is out of memory is selected to be brought into memory. The lowest
priority job that is in memory is swapped out of memory to make room for the
job being brought in. If this outswap does not yield adequate free memory
space, the next lowest priority job is outswapped and the process is repeated
until enough space is made available for the selected job to be brought into

memory.

The job scheduler attempts to overlap job swapping time with the execution of
jobs that are in memory. The "Swapping-I/0" statistic produced by the SYSTAT
command indicates the percentage of time that some job swapping was taking
place; the "Swap-wait” statistic indicates the percentage of time that no
executable job was in memory and swapping was taking place.

A system parameter (CORTIM) is used to keep executable jobs in memory for a
reasonable minimum length of time. As long as the job remains executable, it
is not eligible to be swapped out of memory until CORTIM units of clock time

have elapsed. If the job enters a wait state (other than waiting for non-
terminal I/0 completion), then it becomes immediately eligible for swapping.

Jobs are temporarily locked in memory by the system during non-terminal I/O
until released by the device handler in order to make the data transfer into
the correct job area. If the job has exceeded its time-slice parameter and the
job swapper wants to swap it out of memory, then the system "holds" its I/0 by
preventing it from starting any new I/0 operations. Jobs may also lock
themselves in memory by using real-time EMT requests.

-89-

System Operation

7.5 Real-time interrupt processing

The real-time interrupt handling facility has two subdivisions: real-time
interrupt service routines and real-time interrupt completion routines.

7.5.1 Real-time interrupt service routines

Real-time interrupt service routines provide rapid interrupt response by
running at fork level in user mode, but do not maintain the full context of the
job. They can execute without requiring a job scheduling cycle, but only a
very limited subset of system service calls can be used from within an
interrupt service routine. Since real-time interrupt service routines execute
at fork level, they are intermixed with system interrupt service fork routines
and are queued and ex 2d in order of occurrence. These real-time interrupt
service routines will execute prior to any other job regardless of the
associated job”s priority.

7.5.2 Real-time interrupt completion routines

Real-time interrupt completion routines run with the full context of the job
and require a job scheduling cycle before execution. This mechanism does not
provide as rapid response as interrupt service routines, but allows normal
access to programmed requests from within the completion routine. Each
real-time interrupt completion routine has a real-time software priority which
is used by the scheduler to compute the execution priority of the real-time
completion routine. The priority of the completion routine is calculated by
adding the priority specified with the EMT that connects the interrupt to the
completion routine to the PRIHI system generation parameter; this priority is
constrained by the maximum allowed (127). If a real-time completion routine
enters a wait state, then when it resumes execution it returns to the same
priority as prior to the wait condition.

A real-time interrupt completion routine may also have a software priority of
zero, in which case its execution priority depends on the execution priority of
the job. If the execution priority of the job is greater than or equal to
PRIHI, then the real-time interrupt completion priority is calculated to be
PRIHI and the real-time completion routine is treated the same as above. If
the priority of the job is less than PRIHI, then the real-time completion
priority is scheduled as a time-shared job in a non-interactive wait completion
state.

The following diagram illustrates the processing of an interrupt and shows the
relationship between interrupt service routines and real-time interrupt
completion routines:

-90-

N

System Operation

Interrupt Processing

Level 3

Level 2

Level 1

+
I
Service |
Routine |
-+

| Interrupt

.
L]

-t
L)

Requests
l’

-+
T

p — 4
1 |
4 |
e
a0 9
S g
~ e
o &
o+ 3
& A0
= 8 ™
- O
.A o
A\
|
~ |
5
[]
>~
~ |
|
-Tllll-ll
[o11}
(=l =
- O W
o - U
v [=BR = I =
—_—— U U o o
[~ B
~ [a" =]
g z82
~r < O
+——

e
{

1
4+

3
T

I
I
I
I
I
|
|
I
I
I
I
I
|
I
I
I
|
I
I
I
I
I
I
I
|
I
I
I
I
|
|
I
|
|
I
I
|
I
I
I
I
I
I

Return from interrupt

-01 -~

System Operation

This diagram shows that there are three "levels" of interrupt processing.
Level 1 is entered when a hardware interrupt occurs. In this level the
processor (hardware) priority is set to 7 which causes other interrupt requests
to be temporarily blocked. After some brief interrupt entry processing, the
system performs a .FORK operation which queues up a request for processing at
fork level and then drops the processor priority to 0. At this time another
hardware interrupt can occur, in which case the cycle will be repeated and
another request for fork level processing will be placed on the queue.

Level 2 processing is also known as "fork level” processing. This level of
interrupt processing services requests that were placed on a queue by the .FORK
operation. Hardware interrupts are enabled during this processing and if any
other interrupts occur their service requests are placed at the end of the fork
request queue. Interrupt service requests are processed serially in the order
that the interrupts occurred. Only a limited set of system service calls can
be used from service routines running at fork level. One of the valid EMT's is
a request to queue a user completion routine for subsequent processing.

Level 3 processing occurs in "job state”. That is, the TSX-Plus job execution
scheduler selects the highest priority job or completion routine and passes
execution to it. During level 3 processing, interrupts are enabled and job
execution may be interrupted to process fork level interrupt service routines.

7.6 Window Print Operation

TSX-Plus provides a facility known as Process Windowing (tm) which, if enabled
for a process, causes the system to monitor all characters sent to the terminal
and maintain an in-memory image of what is currently presented on the terminal
screen. This allows the system to restore the terminal display when switching
between subprocesses. Process windowing also provides a ‘"print window"
function which allows a user to request the current window contents be printed
by typing a control character.

The WINPRT program must be executing to process a print-window request. (The
WINPRT.SAV program is supplied with the TSX-Plus distribution). This program
is ordinarily run as a detached job. A command file named WINPRT.TSX is
provided which may be specified with a DETACH command in TSGEN to cause WINPRT
to be started as a detached job when TSX-Plus is initiated.

Each time a print-window request is made, a completion routine is executed in
WINPRT. This completion routine accesses the current window contents for the
job issuing the print request and saves this information in a memory area that
is part of the WINPRT job. If multiple print requests occur rapidly, WINPRT
captures the window data and queues the print requests for processing in the
order in which they occurred.

The number of print requests which can be queued by WINPRT is determined by the

amount of memory space available to the WINPRT job. The space required for the
program itself and one print request is 11Kb. Each additional print request

-02~

e’

System Operation

requires an additional 6.4Kb. Thus by using a MEMORY command in the command

file that starts the WINPRT detached job or by use of the SETSIZ program, you
can control the amount of memory used by WINPRT and the number of requests it

can queue.

WINPRT must execute with GETCXT privilege. It must also have access to all of
the devices to which print window requests will be directed.

. If you have problems getting the print window function working, check the
following things:

1. Is windowing turned on (SET WINDOW)?

2. Are you using the correct control character to request the window to
be printed? Control-B is the default character but it may have been

changed by use of the PWCH sysgen parameter.
3. Is the WINPRT program running?

4. Does the WINPRT job have GETCXT privilege and can it access the print
device you specified with the SET PRINTWINDOW/DEVICE=device command?

If you still have problems, try running WINPRT from a time-sharing line rather
? than as a detached job. It will print error messages if any error occurs.

-93-~

N

-94-

8. SYSTEM TUNING

Since every computer site is unique, there is no single optimum set of
parameters for TSX-Plus system generation. Performance depends on both the
system configuration and its actual use. It 1is necessary to analyze the
“hardware available as well as the type of application programs which are most
commonly run. Together with a knowledge of those programs” characteristics and

a basic understanding of the performance features of the operating system,
decisions can be made to improve system performance. System tuning is an
on—-going process which becomes more apparent with increased experience.

Since the basic function of the operating system is to execute user programs,
the most important tool in tuning system performance is knowledge of the
features used by these jobs and the resources available to them.

Above all, have reasonable expectations; do not expect a LSI-11/23 with slow
disk devices to perform like a LSI-11/73 or PDP-11/44 with high-speed disks.

Three distinct system concepts interact with each other to affect system
performance tuning: memory utilization, job execution scheduling, and I/0

optimization.

8.1 Memory utilization

With the drastic reduction in memory price that has taken place in the past few
years, and the availability of models of the PDP-11 family such as the
11/23-Plus, 11/24, 11/44, and 11/73 which can address up to 4M bytes of memory,
there is a tremendous disparity between the sizes of systems running TSX-Plus.
Fortunately, TSX-Plus has the flexibility to run well in small systems and also
take full advantage of large memory systems.

The tuning of TSX-Plus is quite a bit different depending on the amount of
memory available. From the point of view of system tuning and operation, a
"small” system is one which has inadequate memory to simultaneously accommodate

all of the time-sharing jobs that are routinely active. A "large"” system is
one which has more than enough memory to accommodate all active jobs. A
"medium” size system is one which has enough memory to accommodate most active
jobs and which has some, but not heavy, job swapping. It must be realized that
the most careful tuning of a small system will not yield the performance
improvement that could be gained from upgrading the system by adding more
memory.

In tuning a small system, the primary consideration is to minimize job
swapping. This, in turn, reduces to a problem of minimizing the size of the
operating system and the amount of space used by frequently run applications.

8.1.1 System memory utilization
The memory utilization of the operating system is discussed and illustrated in

the chapter titled System Internals. The components over which you have some
control are:

1. Optional features such as the single line editor, generalized data
caching, PLAS support, real-time support, etc.

-95-

System Tuning

2. The number of device handlers.

3. Space allocated for job tables; this depends primarily on the number
of lines generated into the system (real, subprocess, and detached)
and, to a lesser extent, on the size of the terminal character
buffers allocated for each line.

4. The use of shared run-time systems that allow multiple users to
access a common run—-time system.

Since the operating system is permanently resident, keep it to a minimum size.
Do not include unused device handlers or unused time-sharing line definitionms.
Do not include more subprocesses or detached jobs than will be actually used.
Do not include optional features which will not be used (e.g. PLAS, perform-—
ance monitoring, real-time support). The TSX-Plus Installation Guide provides
specific information about the amount of memory space used by each optional
feature and each additional time-sharing line. Features such as the single
line editor, PLAS support, and the generalized data cache are not recommended

for small systems.

Include a shared run-time if it will be used regularly by more than two jobs.
~ But, remember that shared run-times are permanently resident and are wasting
system space when not in use.

Specify reasonable values for system parameters such as terminal I/0 and spool
buffers. Some experimentation may be necessary to determine what buffer sizes
are necessary to achieve satisfactory performance for the job mix in your
situation. Balance the use of adjustable system features with the knowledge
that excessive job swapping may be caused by overly large system parameter
selections.

8.1.2 User program memory utilization

The memory partition allocated to a job under TSX-Plus is dynamic and may
change size from time to time. The key to user memory optimization is to set
the partition size to the smallest size possible for each program that is run.
The amount of memory that is allocated to the job partition can be controlled
through three techniques:

1. The MEMORY keyboard command.
2. A TSX-Plus system service call (EMT).

3. The SETSIZ program that can store into a SAV file a value indicating
how much memory to allocate for the program when it is run.

The .SETTOP EMT does not change the amount of memory allocated to a job

partition. If the partition size is to be changed while a program is exe-
cuting, a TSX-Plus specific EMT must be used.

-96-

N

System Tuning

The first step in optimizing program memory utilization is to determine how
much memory space is actually needed by each application program. This is most
easily done by using the MEMORY keyboard command to set the partition size and
then attempting to run the application program. By varying the size specified
with the MEMORY command you should be able to determine the minimum amount of
memory which can be allocated for each program.

Note that most programs either execute or don”t depending on whether there is
adequate memory available; however, some programs such as the COBOL-Plus
run-time system may execute more slowly if there is restricted memory space.
Hence, you should not only determine the minimum amount of memory required to
run the program but should also note the effect of restricted memory space on

the performance of the program.

Once the minimum memory size has been determined for a program, the SETSIZ
program can be used to store a value into the SAV file for the program that
automatically sets the partition size each time the program is run. A command
file named SETSIZ.COM is provided with the TSX-Plus distribution to set
appropriate sizes for system utility programs such as PIP, DIR, KED, etc. Note
that the SETSIZ.COM file needs to be executed only once - when the TSX-Plus
system is installed.

The default partition size (as specified by the DFLMEM sysgen parameter) should
be set to a reasonable value.

The SHOW MEMORY command can be used to determine the distribution of memory
resources between the system and users.

8.2 Job scheduling optimization

Eight time-slice and two I/0O count parameters are used to control job sched-
uling. The eight time-slice parameters are QUANO, QUAN1, QUAN1A, QUAN1B,
QUAN1C, QUAN2, QUAN3, and CORTIM. The two I/0 count parameters are INTIOC and
HIPRCT. These parameters are assigned initial values during system generation.
Their values can be changed dynamically during the operation of the system by
use of a command of the form:

SET parameter value

where "parameter” is the name of one of the ten parameters. Values for the
time-slice parameters are specified in 0.1 second units. Operator command
privilege is required to change the value of a system parameter. Note that
system tuning parameters (QUANO, QUAN1, QUAN1A, QUAN1B, QUAN1C, QUAN2, QUAN3,
CORTIM, INTIOC and HIPRCT) are global to all users and may not be set on a
line-by-line basis.

-97-

System Tuning

The SET SIGNAL command can be used to monitor the job state transitions and is
very useful for selecting values for job scheduling parameters. The form of
the SET SIGNAL command is:

SET SIGNAL [NO]parameter

where "parameter” is one of the following system parameters: QUANO, QUANI,
QUAN1A, QUANIB, QUANIC, QUAN2, QUAN3, INTIOC, or HIPRCT.

When signaling has been set for a system parameter, the bell will be rung at
the terminal of the job which set the signal each time a job state transition
occurs because the job has reached the specified parameter value. This allows
the system manager to observe how often the job changes state based on
different parameter values. The SET SIGNAL command operates on a line—by-line
basis and affects only the line that issued the command.

Signaling may be turned on for any combination of parameters, but each
parameter must be specified by a separate SET SIGNAL command. Signaling for an
individual parameter may be turned off by specifying "NO" in front of the
parameter name. All parameter signaling may be turned off by use of the
following command :

SET SIGNAL OFF

When a job receives an activation character from the terminal it is classified
as "interactive"” and placed in the highest priority state within the inter-
active state group. The job remains in this state until QUANIC units of time
have passed at which time the job is reclassified into a lower priority state
that is still within the interactive job state group. Jobs in this group are
scheduled on a round-robin basis every QUANI1B units of time.

If a job performs more than INTIOC I/0 operations or exceeds QUANl units of
time before it receives another activation character from the terminal, it is
classified as non-interactive and is placed in the non-interactive compute
bound state. Jobs in this state are scheduled on a round-robin basis every
QUAN2 units of time. Whenever a non-interactive job waits on a resource (such
as an I/0 operation), the job is placed in a wait state. On completion of the
wait condition, the job is placed in a non-interactive wait completion state
which has a higher priority than the compute bound state but a lower priority
than the interactive states. The job is allowed to run in the completion state
for QUAN1A units of time after which is is placed back in the non-interactive
compute bound state.

In selecting values for these parameters, the following guidelines should be
considered: It is highly desirable that interactive jobs such as data entry
applications and editing programs be classified as interactive through each
terminal interaction. Thus, QUAN1 should be set large enough so that the total
CPU time used by the application program during one interaction can be
completed. ©Note that if a job performs I/O operations the CPU time counter is
suspended (time is not counted while a job is in a wait state) and restarted

-98-

System Tuning

(but not reinitialized) when the I/O operation completes. Also, the INTIOC
parameter should be set to a value large enough to allow all I/0 operations
required during a single interactive transaction to be completed.

It is much better to select values for QUAN1 and INTIOC that are too large
rather than too small. If the values are too large they will allow long
running (non-interactive) programs to be scheduled as interactive slightly
longer than necessary. If they are too small, interactive jobs will be
reclassified as non—interactive (and given a lower priority) while they are
executing an interactive transaction.

The QUANL and INTIOC system parameters are two of the most critical scheduling
parameters. Jobs are classified as interactive from the time that a character
is received from the terminal until QUANI units of CPU time are used or INTIOC
I/0 operations have been performed. The following procedure can be used to
select optimum values for these parameters:

1. Issue the following keyboard commands:

SET SIGNAL QUAN1
SET SIGNAL INTIOC

2. Set INTIOC to a large value by use of the following keyboard command:

SET INTIOC 1000

3. Run an application program whose execution is to be optimized.
4. From a separate terminal, vary the value of QUANL by use of the
keyboard set command :

SET QUAN1 value

For each trial value of QUAN1l, enter several transactions to the
application program and see if the bell rings at the terminal running
the application program. If the bell rings, increase the value of
QUAN1 and try again. The optimum value of QUAN1 is slightly larger
(add 1 to 5) than the smallest value found which is large enough so
that the bell does not ring while processing a transaction.

5. Repeat the process for INTIOC by setting QUANL to a large value
(e.g., 1000) and varying INTIOC starting with a reasonable value such
as 30.

6. Try several values of INTIOC until the smallest value is found which
is large enough to keep the bell from ringing while processing’ a
single transaction. The optimum value for INTIOC is slightly larger
than this (i.e., add 2 to 10).

-99-

System Tuning

7. After the appropriate value for QUAN1 and INTIOC have been deter-
mined, the system default values for these parameters may be set by
modifying TSGEN and regenerating TSX-Plus.

Note: When performing this type of optimization, choose the most frequent and
important type of transactions for the test. Don”t worry about longer and less
frequent operations such as chaining between separate programs. The perform—
ance measurements should be carried out with a variety of application programs.
Then use the largest values of QUAN1 and INTIOC found for the various appli-
cations as the standard system values. Note that system parameters (QUANO,
QUAN1, QUAN1A, QUAN1B, QUANIC, QUAN2, QUAN3, CORTIM, INTIOC and HIPRCT) are
global to all users and may not be set on a line-by-line basis.

The QUAN1C parameter controls the length of time after each terminal input
activation that a job remains at the highest priority interactive state before
being dropped down to a lower priority interactive state. The ideal value for
QUANIC is just large enough to allow programs, such as KED, which do single
character processing to complete the processing of a single character at the
highest priority state. It is not desirable to set QUANIC large enough to
encompass longer editing operations such as cutting and pasting, or moving to
the top or bottom of a file.

To select the optimum value of QUANIC, use the SET SIGNAL QUANIC command and
find that value of QUANIC which is as small as possible but which does not
cause the bell to ring while performing normal text entry to the editor.

The QUAN1B parameter controls the round-robin scheduling of interactive jobs
within the same state. Its value is usually not critical but should be in the
same range as QUANIC (typically 1 to 4).

The QUAN2 parameter controls round-robin scheduling of non-interactive, compute
bound jobs. In medium to large systems where most programs reside in memory,
the value of QUAN2 is not critical and should be set to a reasonably small
value in the range 2 to 5. 1In small systems, the value of QUAN2 should be set
large enough to reduce job swapping that could take place when multiple compute
bound programs are running. The recommended value for small systems is in the
range 10 to 30.

Each time a non-interactive job completes an I/0 operation, or finishes waiting
on some other resource, the job is given a priority boost. The job remains in
the high priority state until either (1) it goes into a wait state again, such
as waiting on another I/0 operation; or (2) it has executed for QUANIA units of
time, at which time it is rescheduled in the non-interactive compute bound
state. The idea is to give the job a chance to start another I/0 operation
without having to wait its normal turn for service. This allows I/0 intensive
jobs to keep their I/0 active even if there are multiple compute bound jobs
also running.

-100-

System Tuning

Jobs with the same user-assigned priority in the fixed-high-priority group are
scheduled in a round-robin fashion based on the QUANO system parameter. If
QUANO is set to O (zero), no round-robin scheduling is done for high—priority
jobs. Jobs with the same priority in the fixed-low-priority group are
scheduled in a round-robin fashion based on the QUAN3 system parameter. Note
that this round-robin scheduling of fixed-priority jobs only pertains to jobs
that have the same assigned priority value. A job with a higher fixed priority

is never time-sliced with a job with a lower priority.

The CORTIM system parameter controls how long a job is held in memory after
being swapped in from disk. Each time a job is swapped into memory, a timer is
started for the job. The job is not eligible to be swapped out of memory until -

either:

1. The job begins executing and enters a wait state (other than
non—-terminal I/0).

2. CORTIM units of time have elapsed.

Note that a job is never swapped out of memory just because a certain time
interval has elapsed. There must be a higher priority job in an executable
state out of memory to force a lower—-priority job to be swapped. The CORTIM
parameter serves as a '"throttle” to control the job swapping rate. Increasing
the value of CORTIM decreases the job swapping rate but slows the interactive
response time. Jobs with user—assigned priorities equal to or greater than
PRIHI override the CORTIM parameter and may force outswapping of lower priority
jobs regardless of the length of time they have been in memory.

8.3 User program optimization

The TSX-Plus performance monitor feature allows the execution of some appli-
cation program to be monitored and a histogram produced showing the percentage
of time spent in various regions of the program.

The use of single charactger input activation should be minimized because of the
frequency with which this places programs in the high-priority terminal input
complete state. The use of no-wait character input may degrade system
performance even more since this can place the program in a high-priority
terminal input completed state without having received an input character. If
at all possible, terminal input should be buffered and completed with a
specific activation character (this is normally a carriage return although
other activation characters may be defined).

During buffered input, the job is suspended and may even be swapped to disk to
allow other jobs to. execute. High efficiency terminal mode can be used to
reduce the system overhead by eliminating much of the special character
processing associated with terminal I/0.

-101-

System Tuning

8.4 I/0 optimization

TSX-Plus uses three basic techniques to improve system I/0 efficiency: (1)
overlapping of job execution with I/0 wait; (2) device data caching; and (3)
device spooling. It is not obvious, but true, that memory size is one of the
key factors in optimizing I/0 with TSX-Plus.

8.4.1 I/0 wait overlap with computation

One of the benefits of a multi-user operating system like TSX-Plus is that
system resource utilization is improved by allowing multiple users to be
accessing different system resources concurrently.

Whenever one job enters a wait state, waiting for a resource such as an I/O
device to transfer data, the TSX-Plus job scheduler looks for another job that
is ready to run. The second job might initiate an I/0 operation on a different
device or might compute and utilize the CPU while the first job is waiting on
the I/0 operation to complete. Thus, in an ideal situation, the CPU could be
utilized 100% of the time as could all of the I/O devices. Generally, 100%
utilization of all resources is neither possible nor desirable but the overall
system utilization is typically much higher than for a single user system.

The SYSTAT command provides statistics that indicate the degree of overlap that
occurred between job execution and I/0. The "User I/0" statistic is the
percent of time that some I/0 was being performed; the "I/O wait" statistic is
the percent of time that the system is idle because there is no executable job
and some I/0 is taking place. If 100% I/0 overlap took place, the "I/O wait"
value would be O (zero) because there would always be some job to run whenever
I1/0 was active. You can demonstrate this by running a small "loop” program
that will execute continuously while other jobs perform I/0. The RESET command
can be used to reset SYSTAT statistic values.

In attempting to optimize overall system utilization, the first factor to
consider is the number of programs that can fit in memory. Naturally the more
programs that are in memory and ready to run, the better the system utilization
will be. Also remember that job swapping has multiple negative effects on
system ‘utilization: the job being swapped into or out of memory cannot be
executed but the memory space is tied up during the swap and cannot be used by
any other job; the I/0 device to which job swapping is being done is tied up by
the swapping and may block I/0 operations by the jobs that are in memory and
want to run.

The QUANIA and HIPRCT parameters affect the amount of overlap that occurs
between compute-bound and I/0-bound jobs. A non-interactive job is given a
priority boost each time it completes an I/0 operation. This is done to
increase the amount of overlap that occurs between compute-bound and I/0-bound
jobs. .

For example, consider a system that has two continuously executing compute
bound jobs and one I/O bound job. If the job priority was not boosted on I/0
completion, the following cycle would occur:

-102-

NS

System Tuning

1. Initiate an I/0 operation.

2. Place the I/O job in a wait state, waiting for the I/0 operation to
complete.

3. Alternately execute the two compute bound jobs while the I/0 is
taking place.

4. When the I/O completes, place the I/0 bound job at the tail of the
compute—bound queue.

In step 4, the I/0 job is placed at the tail of the compute bound queue which
means that it will have to wait until both compute bound jobs have used up
their time slices before it is allowed to execute and initiate another I/O
operation.

Instead of this, the TSX-Plus job scheduler handles the situation as follows:

1. Initiate an I/0 operation.

2. Place the I/O job in a wait state, waiting for the I/0 operation to
complete.

3. Alternately execute the two compute bound jobs while the I/0 is
taking place.

4. When the I/O operation completes, place the I/0 job in a higher
priority state which causes it to interrupt the execution of the
current compute bound job.

5. The I/0 bound job executes for a short period of time and initiates
another I/0 operation.

6. Put the I/0 bound job back in the I/0 wait state.
v
7. Resume execution of the interrupted compute bound job.

The effect is that the I/0 job is able to keep the I/O device busy by
"stealing” time from the compute bound jobs when each I/O operation completes.

However, if there are several I/0 intensive jobs they may tend to steal so much
time from the compute bound jobs that the compute bound jobs receive little or
no time. The HIPRCT parameter is used to control this. After HIPRCT consecu-
tive priority boosts, the I/0 job is scheduled at the tail of the compute bound
state queue, which means that it will not be executed until all other jobs in
the compute bound queue have executed for their full time slice.

If HIPRCT is set to O (zero), jobs are never given a priority boost on I/0
completion. The recommended value is in the range 5 to 50. The SET SIGNAL
HIPRCT command can be used to monitor how often the HIPRCT parameter cuts off a

priority boost.

-103-

System Tuning

QUAN1A should be set to a small value which is just long enough for I/0
intensive jobs to perform completion processing for one I/0 operation and
initiate another I/0 operation. For example, a data base application might
have to follow a linked list through an index file to find a selected record.
The QUANIA parameter should be set large enough to allow the program time to
locate the forward link in each index block and initiate the I/0 operation to
read the next block. The SET SIGNAL QUANlA command can be used to monitor the
effect of varying the value of the QUAN1A parameter. The recommended value for
QUAN1A is in the range 1 to 4.

8.4.2 Device spooling

Spooling is a technique which intercepts output to slow devices, like printers,
directs the output to a disk file and then services the printer as it becomes
ready for more data. This mechanism is transparent to the user job and returns
the job to an active status more quickly than if the job actually had to wait
for the slow device to complete the transfer.

When the operating system services an I/0 queue request, it temporarily locks
the job into its current memory position so that the data transfer can be
correctly fulfilled according to the information in the I/0 queue element.
When the output is sent to a slow device, this would prevent job swapping until
the last data was accepted by the handler and the transfer request satisfied.
If several users need access to the system, this could seriously degrade
apparent system performance to those users waiting to be activated. However,
when a slow device is spooled, then the output is redirected to the system
spool file and the transfer completes at the faster rate of disk I/0, returning
control to the job and permitting it to be swapped if necessary. In addition,
TSX-Plus will always attempt to double buffer the spooled output request if two
or more buffers have been defined.

8.4.3 Caching
Caching is a technique for improving system performance by keeping in memory a
"cache” of the most recently accessed blocks of data. Each time a read

operation is performed a check is made to see if the requested data block(s)
are in the cache. If so, the data is copied from the cache buffer to the
receiving program buffer and no actual device I/0 is done. Write operations
update the data in the cache as well as writing to the I/0 device.

Caching speeds up read operations so that they are performed at the speed that
the CPU can move data around in memory rather than the speed of an I/0 device.
Write operations are slightly slowed down by caching since updating of the
cache must be done as well as writing of the data to the I/0O device.

TSX-Plus offers three distinct types of information caching: directory
caching, generalized data caching, and shared file data caching.

~104-

e’

System Tuning

8.4.3.1 Directory caching: When a program opens an existing file on a disk, it
is necessary to determine the location of the file by consulting the file
directory on the disk. This results in one or more disk I/0 operations each
time a file is opened. 1In order to speed this process, TSX-Plus contains a
memory resident cache which contains directory information for a selectable
number of files. If one or more jobs open the same file several times, then
the ability to locate that file”s directory information in the directory cache
can eliminate many I/0 requests and significantly improve system performance.

The system device directory is always cached; directory caching for other
devices can be enabled by use of the "MOUNT" keyboard command. See the
TSX-Plus Reference Manual for a detailed description of the MOUNT command.

TSX-Plus manages the entries in the directory cache by retaining those most
recently used. When no space is available in the cache buffer to add a new
directory entry, the least recently accessed entry is discarded and replaced
with the new entry. File operations which change the disk directory infor-
mation (such as .ENTER, .DELETE and .RENAME) are always "written through" the
cache, changing both the directory cache entry and the disk directory. This
eliminates the speed advantage on these types of operations, but reduces the
chances of data corruption.

It is very important to remember to DISMOUNT a disk when changing removable
packs on that device. The DISMOUNT command clears all entries from the
directory cache for the device. If this is not done the new pack may be
corrupted by use of the (incorrect) directory information maintained in the
cache for the previous disk pack. The SHOW MOUNTS command identifies which
devices are currently eligible for directory caching. Note that all jobs which
have MOUNTed a device must either DISMOUNT it or log off before the device’s
directory entries are cleared from the cache.

8.4.3.2 Shared file data caching: Shared file data caching maintains memory
resident copies of data blocks from files which have specifically been declared
to use data caching. After a file is opened in the normal manner, a special
system service call musg be issued to declare that file eligible for data
caching. (Data caching is requested by using the TSX-Plus EMT to request
shared access to the file, regardless of the protection level selected.)

When a request is issued to read data from that file, a check is made to see if
the requested block(s) are currently in the data cache. If the data is in the
cache the data is moved from the cache to the user”s program with no disk I/0.
Data blocks are maintained in the cache according to frequency of use. When
the data cache is full, the least active block is replaced whenever a new block
is read. This replacement algorithm is highly efficient for files with indexed
organization, like COBOL-Plus ISAM files. As with directory caching, the data
cache is always written through. That is, if the information in a block in the
cache is changed, then the disk copy of that block is also updated. If shared
file data caching is used at all, it is recommended that at least 8 blocks be
allocated for the cache. 1If a large area is available for a data cache, it is
recommended that the generalized data caching facility (described below) be
used instead of shared file data caching.

-105-

System Tuning

The number of blocks allocated in memory for the shared file data cache is
controlled by the NUMDC parameter in TSGEN. One way to determine the best
value for this parameter is to generate a system with a large number of cache
buffers and then use the SET NUMDC keyboard command to vary the number of
buffers used while observing the effect on system performance. The SYSMON
program can be used to display statistics about shared file data caching

operation.

8.4.3.3 Generalized data caching: Generalized data caching maintains memory
resident copies of data blocks from devices which are mounted using the
keyboard "MOUNT" command. Each time a read operation is performed, the memory
resident cache of data blocks is searched to see if the block(s) requested are
already contained in one of the data cache memory buffers. If the block is in
the memory cache, it is moved directly from the cache buffer without performing
any disk I/0. If the block(s) are not within the data cache, they are read
into the least recently used data cache buffer(s) and then moved to the
requesting job. Write operations update the memory cache as well as writing to
the device, thus eliminating the possibility of data loss or corruption.

Unlike shared file data caching, generalized data caching applies to all files
that are on mounted devices. This means that SAV files for commonly executed

programs such as PIP, KED, TSKMON, and application programs will benefit from
the cache as well as program overlay segments, and application data files.

To enable generalized data caching, assign a non-zero value to the CACHE
parameter in TSGEN. This causes the data caching code to be included in the
generated system and controls the number of blocks of memory allocated for data
caching buffers. If data caching is not wanted, set the CACHE parameter to O

(zero).

A SET command is available to dynamically alter the number of blocks of data
held in the data cache. The form of this command is:

SET CACHE value

This command does not alter the amount of space allocated for the data cache
(that is directly controlled by the CACHE sysgen parameter), but can be used to
cause the system to use less than the full cache area. Operator command
privilege is required to use the SET CACHE command. The primary use of this
command is to allow the system manager to experiment with different cache sizes
to determine the effect on system performance. Once an optimum cache size has
been determined, the TSGEN parameter CACHE can be set to this value and the
system regenerated. The SHOW CACHE keyboard command can be used to display the
current number of blocks currently being used in the data cache.

The effectiveness of the data caching facility increases with the number of

blocks allocated for the data cache. In systems with large amounts of memory
it is reasonable to allocate several hundred blocks to the data cache. However

it is not wise to allocate so much memory space to the data cache that job
swapping is significantly increased due to limited memory space for time-
sharing users.

=106~

e

System Tuning

The amount of improvement due to data caching also depends on the ratio of the
processor (CPU) speed to the speed of the 1/0 device being cached. The effects
of data caching are most pronounced when a fast processor is running with a
slow I/0 device. Data caching is not recommended for systems which are
primarily bound by CPU utilization rather than I/0 throughput.

Data caching can have a dramatic effect on the execution of overlayed programs
if the cache 1is large enough to hold the overlay segments. FORTRAN and
COBOL-Plus compilation times are typically reduced by 207 to 40% by data
caching.

The following table shows typical cache "hit" rates as a function of the cache
size (in blocks) for various language processors performing assemblies or
compilations:

| Cache size versus percent of blocks read from cache |
| while performing assemblies and compilations |
| cache | I I I I I I
| size | MACRO | FORTRAN | F77 | COBOL-Plus | DBL | Pascal-2 |
20 | 2% | oz | 237 | 11% | 5% | 0% |

35 | 3 | 1 | 23 | 21 | 9 | 0 |

50 | 4 | 1 | 23 | 82 | 10 | 5 I

75 | 14 | 2 | 24 | 83 | 25 | 8 |

| 100 | 36 | 2 | 24 | 84 | 45 | 9 |
| 150 | 48 | 4 | 27 | 84 | 55 | 90 |
175 | 49 | 51 | 33 | 87 | 84 | 90 I
200 | 50 | 87 | 33 | 87 | 84 | 90 |

250	66	90 I 34	87	8	90	
275	92	92	35	88	84	91
300	92	93	87	88	8	92
400	92	94	94	95	84	92
500	92	97	94	98	84	93

The single job (non-XM) versions of F77 and Pascal-2 were used in making these
measurements.

-107-

System Tuning

The following statistics for cache hit rates were measured while running a
COBOL-Plus program performing 5000 random reads on an indexed organization
(ISAM) file containing 44000 records with a 16 byte key.

| Cache Size Versus Hit Rate |
| For Reads From ISAM File |
Cache	Cache Hit Rates
size	for Random Reads
5	24 %
10	32 I
I 15	38 I
20	46 I
I 25	50 I
30	55
40	60
50	64
60	65
70	67
I 80	70 I
I 20	71
100	72
200	79 I
300	82
400	83 I
500	84
1000	85 I

These statistics were gathered by generating a TSX-Plus system with a 1000
block data cache and then using SYSMON to measure the cache hit rate while
varying the effective cache si- - by use of the "SET CACHE nnn" command. It is
recommended that a similar p.oucedure be carried out to determine the optimum
cache size for a given application program.

The shared-file data caching facility should be used instead of the generalized
data caching facility in the following cases:

1. If the primary goal is to speed up application programs which make
heavy use of shared files, and the memory space which can be devoted
to data caching is limited (less than 50 blocks), then the shared-
file data caching facility is more effective than the generalized
data caching facility.

2. If the size of the unmapped portion of the TSX-Plus system is such
that code for the generalized data caching facility cannot be added.
Note that the shared-file data caching facility does not add any code
to the unmapped portion of the system.

-108-

Qe

e

System Tuning

If the generalized data caching facility can be used, it is recommended that
the shared-file caching facility not be used (it is redundant) and the NUMDC
sysgen parameter be set to O (zero).

8.4.4 Virtual memory handler (VM)

The virtual memory handler (VM) allows memory which is not allocated for use by
the operating system to be used as a RAM based pseudo-disk device. Since a
memory access is quite a bit faster than a disk access, VM can be use for
greater speed in locating and reading files which are frequently accessed.

Since most machines will lose the contents of memory during a power outage, VM
should be restricted to read-only, scratch, or executable files. It may be
used to speed the execution of heavily overlaid programs or store temporary
intermediate sort or work files.

VM is similar to data caching and the following considerations may help you to
decide which is best suited to your application:

1. Data is "written through” the cache to the I/0 device that is being
cached. Since there is no I/0 device associated with the VM handler,
no I/0 takes place on write operations. This means that is faster to
write to VM than to a cached I/0 device. This could make VM
considerably faster for a "scratch"” file that has as many blocks
written to it as read.

2. Data written to VM is volatile and will be lost when the system is
shut down or halts due to hardware or software malfunction.

3. The amount of space in VM is fixed at sysgen time and an attempt to
use more space will result in a no-free-space error return. The
number of blocks allocated for caching affects the performance of the
cache but not the capacity. As long as there is available space on
the I/0 device, it is accessible through the cache.

4. Caching is automatic and transparent to application programs. VM
requires that program and data files be copied to VM and that
application programs open files on VM.

5. Data placed in VM is held there until it is deleted or the system is
restarted. Data in the cache is dynamic and may be replaced by data
accessed more recently by other jobs. Therefore the speed of access
to data in VM 1is guaranteed whereas the speed of accessing data
through the cache depends on whether the data is currently in the
cache.

-109-

-110-

N’

9. SYSMON - DYNAMIC SYSTEM DISPLAY UTILITY

SYSMON is a dynamic interactive utility program used to display information
about system activities at a VT2xx, VTlxx, VTI52, ADM3a, TVI-912, or HAZELTINE
type terminal. Tt is used to assist the system manager in optimizing system
resource use and judging the effects of system tuning operations. SYSMON can
also be used by the general user to obtain information regarding system load
and resource usage. It currently provides dynamic screen displays of CPU and
I/0 usage; job status; terminal status; message channel status; user time bar
chart; CPU time bar chart; directory cache contents; data cache usage; and CL

device status.

SYSMON obtains much of its information from tables within TSX-Plus, and thus
requires the use of the TSX-Plus EMT to map to physical memory. Therefore,
either the user must have the MEMMAP privilege, or this must be provided for
SYSMON in the program installation tables. SYSMON is, by default, installed
with the MEMMAP privilege, providing that it is run from the system disk. If
SYSMON is run without the MEMMAP privilege, the user will receive the message:

?SYSMON-F-MEMMAP privilege required to run SYSMON.

SYSMON requires the user to have either OPER or SYSPRV privilege to use the
message channel display screen. This is done to prevent unauthorized users
from discovering file names and other sensitive information that might be
passed in a message channel (to RTSORT, for example). If a user attempts to
run this display without the required privilege, he will receive the message:

?SYSMON-E-You must have SYSPRV or OPER privilege to examine message
channels.

To run SYSMON on a HAZELTINE or TVI-912 type terminal, execute the TSX-Plus
terminal command

SET TERM HAZELTINE

before running SYSMON. Similarly, set the terminal type to ADM before running
SYSMON on an ADM3a type terminal. Note that if the terminal type is not one of
the above terminal types, SYSMON will query the terminal to determine if it is
a VT52, VT100, or VT200 class terminal. If the terminal is none of these,
SYSMON will refuse to run with the message:

?SYSMON-F-Invalid terminal type for SYSMON.

9.1 Creating and running SYSMON

SYSMON is automatically created by the command file which 1links TSX-Plus.
Because it depends on global information from TSX-Plus, it must be relinked
whenever TSX-Plus is changed. If TSX-Plus is not linked on the system disk,
copy the file SYSMON.SAV from the link output device to SY:. Once this is
done, you can run SYSMON by typing:

-111-

SYSMON

R SYSMON

If you do not choose to put SYSMON on the system disk, you must use the RUN
command with the full device/file specification. SYSMON must be installed with
the MEMMAP privilege (the default case) if non-privileged users are to run it.
Note that many of the displays shown here are slightly narrower than SYSMON
produces; this is done to allow the examples to fit on the printed page.

-112-

N

9.2 SYSMON menu

SYSMON

I I
| TSX-Plus SYSMON Utility I
| 18-Nov-85 14:14:06 |
| |
| l
I I
| Enter selection : Sample time : |
| (RETURN to exit) (RETURN defaults to 5 seconds) |
| | |
| I
I l
| 1. System status 6. CPU modes |
| l
| 2. Process execution status 7. Directory cache |
I |
| 3. Terminal status 8. Shared file cache |
| l
| 4. Message channels 9. Generalized data cache }
I :

| 5. User times 10. CL device status }
l

Once you have started SYSMON, you will be prompted from this menu for a display
number and the sample rate. The minimum sample time is one second; you may set
the sample time as high as you wish. Be aware that on slower systems (for
example, 11/23 based systems) using a small sample time can have a detrimental
effect on system response in general. Once you are in a display, press RETURN
to return to the menu.

-113-

SYSMON

9.3 System status display

| : I
| TSX-Plus SYSMON Utility |
| 18-Nov-85 14:14:06 [
I I
I *k%%k%% System Status F¥k*% |
I |
| I
: Total Uptime 00:35:41.0 Cur Total System Parameters ;
| User Time 00:08:11.6 94.1% 22.9% QUANO = 2 |
I QUANL = 20 |
| I/0 Wait Time 00:01:24.8 4.8% 3.9% QUANIA = 2
| ' QUAN1B = 2 |
| Swap Wait Time 00:00:00.6 0.0% 0.0% QUANIC = 1|
| QUAN2 = 10 |
| Idle Time 00:26:04.0 0.0% 73.0% QUAN3 = 20 |
| INTIOC = 30 |
| User I/0 Time 00:02:13.2 * 6.7% 6.2% HIPRCT = 40 |
I CORTIM = 2|
; Swap I/0 Time 00:00:00.6 * 0.0% 0.0% IOABT = 1 ’
| * - Time is overlapped |
| I
T T T e +

The system status display provides information on how time is being used in the
system and current settings for the dynamically modifiable scheduling para-
meters.

Three columns of information are presented for the system time usage display.
The first is the total time spent in a given activity since the system was
booted. (The RESET keyboard command also clears the time counters as if the
system had been booted.) The second column is the percentage of total time
spent in that activity during the last sample period. The final column is the
percentage of time spent in that activity since the system was booted or the
keyboard RESET command was last issued.

Seven rows of information are presented. The first is Total Uptime; the amount
of time since the ‘system was booted. The User Time is the time used in
computation, that is, actual CPU activity. The I/0 Wait time is the amount of
time user processes spend waiting on information from various I/0 devices. The
Swap Wait time is the time the system spends waiting for a process swap to
complete. The Idle Time is the amount of time the system spends idle. The
User I/0 time is the amount of time user processes spend performing I/0.
Finally, the Swap I/0 time is the amount of time the operating system spends
swapping user processes in and out of memory. Note that the percentages will

-114-

)

SYSMON

not always add up to 100 percent. TSX-Plus overlaps I/0 and execution time, so
I/0 time might be building up on one process as another process is executing.
Also, program execution and particularly, the actual sample rate, are dependent
on current system load and number of real-time interrupts taking place. As an
example, the display may be interrupted while computing I/O wait time, during
which the times for the subsequent display items may change.

Job scheduling parameters are displayed down the right side of the screen. The
values of these parameters can be dynamically changed during system operation

by use of the keyboard SET command.

-115-

SYSMON

9.4 Process execution status display |

| l
| TSX-Plus SYSMON Utility I
| 18-Nov-85 12:36:29 |
| : I
| *%%k%% Process Execution Status *%%%% |
| I
| Job Line Pri Program User Name Size Pos Run State |
[p—— — —— e e - |
| 1 1¢(0) 50 KED TSX 34 176 Wait-TT input |
| 3 3(0) 50 Craig 37 Swp Wait-TT input |
| 7 7() 50 TSX 37 429 Wait-TT input |
| 10 10¢0) 40 Support 37 213 Wait-TT input |
| 16 Det. 50 RTSORT SYSTEM 62 Swp Wait-.SPND/.RSUM |
| 20 10(1) 50 SYSMON Support 28 357 I TT input done |
| 21 1(1) 40 MACRO TSX 62 284 C CPU bound process |
I l
| I
I I

For each process on the system, the process execution status display provides:

1. Job Number - the TSX-Plus process number assigned to that particular
process, subprocess, or detached process.

2. Line - This entry tells the process number for the primary process
and the subprocess index of this process for that primary line. If
the subprocess index is 0, than the process is a primary process. If
Det. appears, then the process is detached, and as such belongs to
no line.

3. Priority - the current execution priority for this process.
4. Program being run - the name of the program file being executed.

5. User — the name of the user who owns the process. If there is no
user name associated with the process (detached process or no name
assigned to an account), then the process”s project, programmer
number will be displayed.

6. Memory size - the amount of memory that the process is using -
expressed in Kb (1024 bytes).

7. Memory position - the start of the process”s region in memory,
expressed in Kb from the beginning of physical memory. Swp indicates
that the process is swapped out of memory.

-116-

Running state =
classified as either

All processes that
interactive or CPU-bound,

SYSMON

are not in a wait
depending

nature of the work being done.

Current execution state - What the process is currently doing.

execution states are:

State Displayed

Meaning

Real time state
TT input - sing char act

TT input done

TT output buffer empty
Interactive compute
Timed wait completion
TT output buffer low
I1/0 completion

CPU bound

Low Priority Computation
Wait-I/0 queue element
Wait-Mapped I/0 Buffer
Wait—Cache Control Block
Wait—-Proc Context Block
Wait-USR data access
Wait-I/0 completion
Wait-TT output buf full
Wait—locked block
Wait—-system message buf
Wait-spool file space
Wait-TT input

Wait-=SPD access
Wait—-spool entry
Wait—-message
Wait-.SPND/.RSUM
Wait—-timed interval
Wait-memory expansion

Executing high priority realtime process
Input character just received while

in single character activation mode.
Activation character just received
Terminal output buffer empty

Interactive priority process executing
Finished .TWAIT or .MRKT request

Ready for program to continue output

1/0 transfer completed

Normal process executing

Low priority process executing

Waiting on I/0 queue element

Waiting for buffer to be available
Locating device cache control block
Waiting for access to the Process CB
Waiting on access to USR data base
Waiting for I/0 operation te complete
Terminal output buffer full

Shared file block needed by program lock
Waiting for free system buffer

Print spool file currently full

Waiting for activation character

Waiting for access to device data base
Waiting for spool file control block
Waiting for a message

Waiting for .RSUM request after .SPND
Waiting for interval to finish

Waiting for memory expansion to complete

-117-

state are
on the

SYSMON

9.5 Terminal status display

| |
| TSX-Plus SYSMON Utility |
I 18-Nov—85 12:37:08 |
| l
1 *%k%* Terminal Status *%%*% :
| Process number = 1 (DL) |
| TT line name = Console |
| TT type = VT100, logged on |
| SL status = Enabled, KED, NOTTYIN, SUBSTITUTE, Active |
| SET TT options = DEFER ECHO NO8SBIT NOFORM NOFORMO NOGAG LC PAGE NOPHONE |
| NOQUIET SCOPE NOSINGLE NOSYSPASSWORD TAB NOTAPE WAIT |
| |
| Speed 9600 Command file input . . . disabled |
| Parity none Echo LF after CR enabled |
| Bits per character . . . 8 Escape—letter activation disabled |
| XOFF sent « « « « « . . . noO High-efficiency mode . . disabled |
| XOFF received no Non-wait .TTYIN disabled |
| Rubout filler character . " " Single char activation . disabled |
| Field width activate . . O Transparent output . . . disabled |
| Field limit activate . . O Subprocesses enabled |
| UCL setting middle Default editor KED |
% Activation characters . . none }
| |
+- +

The terminal status display shows the parameters that are currently set on a
given terminal line, various terminal characteristics, the terminal”s owner,
the type of process the terminal is connected to, and if an ASCII DC3
(control-S) has been transmitted or received. This display will prompt you
first for a process number - this can be obtained from the TSX-Plus SYSTAT
command or the process execution status display. If you simply type return at
this point, you will see the information on your own process. If you enter O,
you will get a cycling display through all of the processes. For information
on the parameters displayed, see the TSX-Plus Reference Manual.

-118-

SYSMON

9.6 Message channel display

I

TSX-Plus SYSMON Utility
18-Nov-85 14:55:13

*%%%% Message Channels *#%*%%

Job Channel Message

l
|
|
|
|
l
|
l
15 RTSORT SYS:SLSANL.DDF/IT:DRA/SI:250/EOF:134/KEY:CA2.2:DA58.2:DA60.3: |
CA222.2:CA224.2:CA16.10:DA91.2:DA87.4 |
15 RTSORT SYS:GHGARG.DDF/IT:DRA/SI:250/EOF:134/KEY:CA222.2:CA224.2:DA87 |
 .4:CAl6.10 |

TSTMSG [Message request — completion routine] |
3 TGIPRG [Message request — process waiting] }
|

|

|

l

I

l

l

|

|

5 MSCHRS = 200 MAXMSG = 6 MAXMRB = 10

+ e — e —————— e — e
—
w
%
1

The message queue display shows waiting messages and their respective channel
names. This information is useful to verify correct message channel usage, and
to debug programs using message channels. In this example, a sort command
string is sent on the RTSORT message channel without RTSORT running to verify
that the proper information is being sent (the message will remain in the
channel until read). Similarly, you can verify that a process is waiting on
the proper channel, or that a completion request is active. For more infor-
mation on message channels see the TSX-Plus Reference Manual.

-119-

SYSMON

9.7 User times display

TSX-Plus SYSMON Utility
18-Nov-85 14:14:06

I
I
|
|
I
I
|
0 25 50 75 100 |
R i T S |
4 [002,002] TSX KED LY YT YYY YA | | | :

I I I
[11 [006,112] sAM DPS 49 LZLXRLRDT "R BAARLRE, |
I I I | | [
[12 [006,012] SAM SYSMON 1 |
I I I I I I
| Wait Time 4 7 |
I I I I | (.
| Idle Time 4 % |
I I I I I I
I |
| l I I I [
I I
I I I l I [
I |
| R i Tt SR S|
| |

The user times display shows, for each process that used at least one percent
of the CPU time during the last sample period: the process number, project—
programmer number, user name, program running, percentage of time used by that
process during the last sample period, and a bar graph depiction of that
percentage. This display is useful for determining how CPU time is being used,
and the relationship between process time, wait time (which includes both I/0
wait and swap wait time), and idle time.

-120-

SYSMON

9.8 CPU modes display

4 —————t
I I
| TSX-Plus SYSMON Utility I
| 18-Nov-85 14:14:06 |
I I
| *k%kk% CPU Modes *#%%%* |
I I
| I
I -
| 0 25 50 75 100 |
| I T I S |
} User Time 90 LAAARIILIBIAIIBITBELLLLL LT Toto %ot ToT6Tet0 070 |
I | I I I
| I1/0 wait Time 10 %%%% . |
| | | I | I
| Swap Wait Time 0
| | l | I I
| Idle Time 0
I I l I | I
I User I/0 Time * 30 XZZ%%%%L%%%L%% |
| I I I I l
| Swap I/0 Time * 0 ,
| R it T S
| . |
: * — Time is Overlapped ;

The CPU modes display shows the same information about sample period time usage
that is shown in the system status display, however, it is shown here in a bar
chart format.

-121-

SYSMON

9.9 Directory cache display

I I
| TSX-Plus SYSMON Utility l
{ 18-Nov-85 14:14:06 |

|
l *k%%%%* Directory Cache *#%%#% |
I |
} Page 1 |

l
| DLO:TSKMON.SAV RKO: [UTIL.WORKIT]JOUT.DSK |
| RKO:[SYSMON]SYSMON.SAV RKO: [UTIL]WORKIT.DSK |
| RKO:[UTIL..OUT]SUPER.TXT RKO:UTIL.DSK |
| DLO:KED.SAV RKO: SYSMON.DSK |
| DLO:DIR.SAV RKO: SYSMGR .DSK |
| DLO:PIP.SAV RKO: COBOL.DSK |
| DL1:TSKMN1.OBJ DL1:TSKMN3.0BJ |
| DL1:TSKMN2.MAC DL1: TSKMN3 .MAC |
| DLO:TSXUCL.DAT DL1: TSKMN3.BAK |
| DLO:TSXUC..SAV RKO: [SYSMON] SYSMON. COM |
| DLO:SYSMAC.SML DLO: STDASN.COM |
| DL1:TSKMN1.MAC DLO: SUO5.TSX |
| DLO:MACRO.SAV DLO:ACCESS.TSX |
| DL1:TSKMON.BAK DLO:LOGON. SAV |
| RKO:[SYSMGR]SYSMON.NEW DLO:SUOS5B.TSX |
| DLO:DEF.COM DL1: TSKMN2 .BAK |
l DLO:SYSMON.SAV DLO:DUP. SAV {

The directory cache display shows what file entries are in the directory cache.
This information can be used to determine what files are being used frequently
and to determine the best size for the directory cache. Logical disks are

shown in square brackets;

if the file in the entry is nested more than two

logical disks deep, each omitted intervening logical disk is denoted with an
extra period.

-122-

N

SYSMON

9.10 Shared file data cache display

TSX-Plus SYSMON Utility :

18-Nov-85 14:14:06 |

%%%% GShared File Data Cache ##%*%% :

|

Cur Total |

Reads from shared files 240 6818 }
Reads from data cache 196 4924 :
Percent reads from cache 81 % 72 % :
Writes to shared files 30 3328 ;
Writes through cache 28 3216 ‘
Free shared file channels 25 }
Blocks in cache (NUMDC) 0 E

The shared file data cache display shows information on utilization of the
TSX-Plus file 1locking facility. The NUMDC parameter controls the number of
buffers used for shared file data caching. The I/0 counters can be reset using
the TSX-Plus monitor RESET command. This may be necessary, as the I/0 counts
are stored in TSX-Plus as sixteen bit (single word) integers; these tend to

overflow after
can be useful
various values
being done out
the effect of

a large amount of processing. The information presented here
in tuning the data cache. This is done by setting NUMDC to
and observing the speed of the I/0 and the percentage of I/0
of the data cache. Also, other effects can be noted, such as
two programs doing shared file I/0, and the speed of I/0 on

various devices.

-123-

SYSMON

9.11 Data cache display

I| TSX-Plus SYSMON Utility :
l 18-Nov-85 14:14:06 |
: *%%%%* Generalized Data Cache = **%%%%* ;
| |
| Cur Total |
1 Reads from mounted devices 57 7968 =
I Blocks read from mounted devices 292 55629 {
% Blocks read from cache 292 48468 :
‘ Percent blocks read from cache 100 7% 87 % ;
1 Writes to mounted devices 101 4556 |
1 Blocks written to mounted devices 103 8051 :
} Blocks updated in cache 103 15212 ;
E Data cache size (CACHE) , 1000 E

The data cache display shows information on wutilization of the TSX-Plus
generalized data caching facility. The information presented here can be
useful in tuning the data cache. This is done by using the SET CACHE command
to enable various cache sizes, and observing the effect on the cache hit ratio.
The intent is to allow as much memory for the data cache as may be effectively
used, but to also leave as much free memory as possible for user processes to
minimize process swapping. In this context, swapping activity includes both
swapping of processes in and out of memory, and the moving of processes around
in memory to enable all processes to get the memory they need when process
sizes are changing. Note that both the SET CACHE command and the RESET command
will reset the cache counters.

~124-

N’

SYSMON

9.12 CL device display

At — +

TSX-Plus SYSMON Utility
18-Nov-85 12:38:02

%%%% CL Device Status *%%
CL Unit Number = O (Not spooled)

Assigned to line 4 VAX 1link (DH- 2)
In use by 20 Support

CR DTR NOS8BIT NOFORM NOFORMO LC TAB CTRL LFIN NOLFOUT
NOBININ NOBINOUT

CL SET Options

Line Speed 9600 XOFF sent « « « « « « « & no
Bits per character . . . 8 Read pending yes
Line Width 0 Write pending no
Page Length 66 Input ring buffer used . 0
Skip at bottom of page . 0 Break being sent no

|
l
l
l
|
|
|
l
|
|
l
|
|
|
|
: Parity « none XOFF received no
l
l
|
|
l
|
]
f
|

The CL device status display shows the CL device settings, which process has
the device allocated or actually in use, and various device status values. To
obtain a cycling display of all the CL devices, type return when prompted for
the device number.

9.13 Exiting SYSMON

To exit SYSMON, type RETURN to leave the current display, and type RETURN to
the display number prompt. This will cause SYSMON to exit, and will clear the

screen.

-125-

-126-

p—

Appendix A - Startup Error Messages

The following error messages can be displayed during the startup of TSX-Plus.
A1l are fatal error messages and once reported, abort running TSX-Plus. All
messages are in the format

?TSX~F-error message displayed here

Cannot find device handler file: dd

The device handler file, "SY:dd.TSX" (where dd represents a two character
device driver name), could not be found. A device handler file must exist
for each device listed in TSGEN using the DEVDEF declaration. Note: this
error message only occurs if the INIABT sysgen parameter is set to 1. If
INIABT is zero, the system ignores device declarations for which there is
no TSX handler. Check the devices specified by the DEVDEF declarations in
TSGEN, make any necessary corrections, and generate a new system. Verify
that the handler file is present on the system disk and if it is not,
place a copy on the system device. Standard device drivers supported by
TSX-Plus are supplied on the distribution media. If this is a standard
device driver, the file may be copied from the distribution media to the
system device. If the device handler is not provided on the distribution
media, a device handler file must be built to run with TSX-Plus. (See the
System Manager”s Guide for information concerning the building of device
handlers for TSX-Plus.)

Cannot find "SY:CCL.SAV" file
The file "SY:CCL.SAV" cannot be found. This file was provided on the

distribution media and should be copied to the system device.

Cannot locate "SY:SYSODT.REL" file
The file "SY:SYSODT.REL" cannot be located when attempting to run with the
system debugger. This file was provided on the distribution media and

should be copied to the system device when attempting to install TSX-Plus
with the system debugger.

Cannot find "SY:TSKMON.SAV" file
Cannot locate "SY:TSX.SAV"
The file "SY:TSKMON.SAV" or "SY:TSX.SAV" cannot be found. These files are
created during the system generation process. If TSX-Plus was not
generated on the system device, copy the missing file from the device used
to build TSX-Plus to the system device. If the file does not exist on the
generation device, the system generation was not successful. (See the
. TSX-Plus Installation Guide for information concerning system gener-
ations.) These files are provided on the distribution media for
PRO/TSX-Plus, which does not require system generation; copy these files

to the system disk.

Cannot open PLAS region swap file

Number of contiguous blocks needed = nnnnnn
The PLAS (Program Logical Address Space) swap file defined in TSGEN cannot
be created because the specified device does not have enough contiguous
unused blocks. The number of contiguous blocks required is represented by
the number "nnnnnn". Remove any unnecessary files from the disk assigned

-127-

Startup Error Messages

to contain the PLAS swap file and consolidate the unused blocks (see the
SQUEEZE command in the RT-11 User”s Guide) until enough contiguous free
space is available.

Cannot open progranm swap file

Number of contiguous blocks needed = nnnnnn
The program swap file defined in TSGEN cannot be created because the
specified device does not have enough contiguous unused blocks. The
number of contiguous blocks required is represented by the number
"nnnnnn”. Remove any unnecessary files from the disk assigned to contain
the swap file and consolidate the unused blocks (see the SQUEEZE command
in the RT-11 User”s Guide) until enough contiguous free space is avail-
able.

Cannot open shared run—-time file: dev:file.ext
The shared run-time file named "dev:file.ext" specified in TSGEN could not
be opened. Check the run-time file names defined in TSGEN, make any
necessary corrections, and generate a new system. Verify that the file is
present on the device specified and if it is not, place a copy on that
device.

Cannot open spooled device: dd
The spooled device named "dd" cannot be opened by TSX-Plus. Check the
device names specified in the SPOOL declaration in TSGEN, make any
necessary corrections, and generate a new system. Verify that the device
handler file "SY:dd.SYS" is present on the system device and if it is not,
place a copy on that device and install the device handler in RT-11 (see
the INSTALL command in the RT-11 User”s Guide).

Cannot open SY:INDTMP.TSX file. ﬁ_blocks needed = nnnnnn
The IND storage file named "SY:INDTMP.TSX" cannot be created because the
system device does not have enough contiguous unused blocks. The number
of contiguous blocks required is specified by the number "nnnnnn". Remove
any unnecessary files from the system disk and consolidate the unused
blocks (see the SQUEEZE command in the RT-11 User”s Cuide) until enough
contiguous free space is available.

Cannot open TSXUCL data file. # blocks needed = nnnnnn
The UCL (User Command Language) data file named "SY:TSXUCL.TSX" cannot be
created because the system disk does not have enough. contiguous unused
blocks. The number of contiguous blocks required is specified by the
number "nnnnnn". Remove any unnecessary files from the system disk and
consolidate the unused blocks (see the SQUEEZE command in the RT-11 User”s
Guide) until enough contiguous free space is available.

Computer line time clock (50 or 60 Hz) is not working
Each PDP-11 computer has a 'line time clock" which interrupts the system
at a frequence based on the local power system (50 or 60 Hz). The line
time clock must be running for the proper operation of TSX-Plus. If you
receive this error message, confirm that the line time clock is not

~128-

N

Startup Error Messages

running by using the TIME command while running under RT-11, then contact

your DEC field service engineer or take other corrective action to get the
clock working.

Error on read of SYSODT rel file
An input error occurred when reading the system debugger file named
"SY:SYSODT.REL" into memory. Check the system disk and the hardware
involved.

Error reading device handler file: dd
An input error occurred when reading the device handler file "SY:dd.TSX"
into memory. Check the system disk and the hardware involved.

Error reading "SY:TSX.SAV"
An input error occurred when reading the memory resident overlays from the
file "SY:TSX.SAV" into memory. Check the system disk and the hardware
involved.

Generated TSX system is too large
The TSX-Plus sysEEﬁ is generated too large to load and run. Although this
may occur when there is not enough total physical memory, it usually
implies that the unmapped portion of TSX-Plus exceeds 40Kb. Remove any
unnecessary features, decrease excessive parameters, and generate a
smaller system. See the TSX-Plus Installation Guide for information on
the effect of optional features on the size of TSX-Plus.

Handler for SY device was not loaded

The handler for the system device was not defined using a DEVDEF decla-
ration in TSGEN. Specify the system device handler with a DEVDEF
declaration in TSGEN and generate a new system.

Handler not generated with extended memory support: dd
The device handler file named "SY:dd.TSX" (where "dd" represents the two
character device driver name) was not generated with the required memory
management support. Verify that the device handler was written to include
support for memory management and review the TSX-Plus System Manager”s
Guide for building device drivers for TSX-Plus.

-Insufficient disk space for spool file

The spool file defined in TSGEN cannot be created because the specified
disk does mnot have enough contiguous unused blocks. The number of
required contiguous blocks was defined using the SPOOL declaration in
TSGEN. Either decrease the number of blocks required; or remove any
unnecessary files from the disk assigned to contain the spool file and
consolidate the unused blocks (see the SQUEEZE command in the RT-11 User”s
Guide) until enough contiguous free space is available.

-129-

Startup Error Messages

Insufficient memory space for data cache
Not enough memory was available to load TSX-Plus and allocate the
specified number of data cache blocks defined by the CACHE parameter in
TSGEN. Decrease the number of data cache blocks specified or install more

memory.

Insufficient memory to load all mapped system regions
Not enough memory was available to load memory resident mapped system
regions in TSX-Plus. Review the Software Product Description to determine
if you have sufficient memory. Review the system generation parameters in
TSGEN, remove any unnecessary features, decrease excessive parameters and
generate a smaller system or install more memory.

Insufficient memory to load all shared run—time systems
There is not enough memory to load all the shared run-time systems
specified in TSGEN. Review the system generation parameters in TSGEN,
remove any unnecessary features, decrease excessive parameters (remove
some or all of the shared run-time systems) and generate a smaller system
or install more memory.

Insufficient total physical memory for generated system
The TSX-Plus system generated with the specified features was too large
for the physical memory available. Review the system generation para-
meters in TSGEN, remove any unnecessary features and decrease excessive
parameters, and generate a smaller system or install more memory.

Invalid interrupt vector address for T/S line:

Line # = nn

The line numbered "nn" has an invalid vector address. Time-sharing lines
may only be vectored in the range 60 to 477, and may not use a vector
assigned to any other device. Lines are numbered sequentially in
increasing order by LINDEF specification in TSGEN. Correct the vector

address for the indicated line and generate a new system.

Invalid RT-11 version for device handler dd
A device handler named "dd" (where "dd" represents a two character device
driver name) required a later version of RT-11 than the one installed on
the system device. During initialization, TSX-Plus analyzes each device
defined by the DEVDEF specification in TSGEN and determines if the present
RT-11 version will support the inclusion of that handler. Update RT-11 to
the correct version which supports the device specified.

Invalid status register address for T/S line:

Line # = nn

The line numbered "nn" has an invalid status register. When the specified
CSR is addressed by the CPU, the location does not respond. Lines are
numbered sequentially in increasing order by LINDEF specification in
TSGEN. Correct the status register for the indicated line and generate a

new systen.

-130-

Startup Error Messages

System is not equipped with extended memory management hardware
TSX-Plus could not find extended memory management hardware. Set the
TSGEN parameter EXTMCH to zero (0) and generate a new system or install
extended memory management hardware.

System is not equipped with memory management hardware
TSX-Plus will not run on the current hardware configuration because it
requires memory management support. Check the TSX-Plus Software Product
Description to determine if any other required hardware is necessary and
install the necessary hardware.

TSX generation did not include device dd

One of the files defined in TSGEN included a device handler named "dd"
(where "dd" represents the two character device driver name) that was not
specified in the handler declaration section DEVDEF in TSGEN. Check all
file specification and DEVDEF declarations in TSGEN, make any necessary
corrections, and generate a new system.

TSX is already running
TSX-Plus is currently running and therefore cannot be started again.

-131-

-132-

Appendix B - SYSTEM ERROR MESSAGES

The error messages detailed below are reported when fatal system errors occur
and once displayed on the system console the operating system will halt. All
of the system error messages have identical formats which display the following
information:

<BELL>?TSX-F-Fatal system error at nnnnnn
EEE-Error message displayed here (see below)
Arg. value = nnnnnn

(Additional information)

SP at time of crash = nnnnnn

The additional information provided will indicate the identity of the system
region mapped when the error occurred. This additional information will take

one of three formats.

The following additional information is displayed when the mapped system region
points to a mapped device handler:

Device name: xxx

The following additional information is displayed when the mapped system region
points to a memory resident code overlay region:

Seg. value = nnnnnn
Overlay: xxx

The following additional information is displayed when the mapped system region
does not point to either a mapped device handler or a memory resident code

overlay region:
PAR5 value = nnnnnn
DTL-Demonstration system time limit reached

The time limit has expired for the demonstration system. This time limit
is generally thirty minutes. TSX-Plus may be started again.

FRK-No free FORK blocks
A system routine issued a FORK request when the FORK queue was full. One

or more devices is repeatedly interrupting faster than can be processed by
the system. Try increasing the value of the NUMFRK parameter in TSGEN.

JMO-Jump occurred to location 0
The jump instruction occurred to location 0. If the TSX-Plus crash dump
facility is enabled, information concerning the current state of the
system will be output to the chosen crash dump device.

-133-

System Error Messages

KRE-KMON read error
An input error occurred when attempting to read the file "SY:TSKMON.SAV"

into memory. This indicates a hard error was detected and reported by the
system device handler.

KTP-Kernel mode trap
A trap through vector 4, 10, or 250 occurred in kernel mode while at

interrupt level. The argument value indicates the address at which the
trap occurred. If the trap address was 120000 or higher, the additional
information specifies the overlay code section which was mapped when the
error occurred. Enable the system crash dump feature by setting the

. SYSDMP parameter to 1 (one) and assigning an appropriate value to the
DMPTCR parameter in TSGEN.

LMF-Job lock mem failure
A system failure occurred when no memory was available in which to lock a

job that had previously requested memory.

MIO-Need to increase value of MIONWB sysgen parameter
The §§stem attempted fg_perform an I/0 operation to a device that requires
I/0 mapping and there were no free system I/O mapping buffers or wait
queue elements. You must increase either the MIONBF parameter which will
allocate more I/0 mapping buffers or the MIONWB parameter that increases
the number of wait queue elements.

MPR-Memory parity error
A trap occurred through vector 114 indicating a hardware memory parity

error was detected.

NQE-Ran out of free I/0 queue elements
An attempt was made to queue a system I/0 request and no I/O queue
elements were available. Try increasing the NUMIOQ and NUMSYQ parameters

in TSGEN.

NSP-No free swap command packets
No free swap command packets were available to queue job swap request.
Try increasing the NSCP parameter in TSGEN.

PFT-Power—-fail trap
A trap occurred through vector 24 indicating a hardware power failure.

RIT-Trap in real-time interrupt service routine
A trap in a real-time interrupt service routine causes a system halt
because interrupt service routines run at fork level. A trap in a
real-time interrupt completion routine does not cause a system halt.

-134-

System Error Messages

SFO-Job swap file overflow
Too few job swap file slots were declared in TSGEN and there was no room
in which to place a job which required swapping. Regenerate the system
and increase the value of the SWPSLT sysgen parameter, or set SWPSLT to O
(zero) in which case the system will allocate a swap file slot for each
job.

SIE-Swap file I/0 error

An input or output error occurred either reading or writing into the
program swap file. This indicates a hardware malfunction on the program
swapping disk.

SJN-Job # 0 at STOP

A job number of zero was detected during a request to stop the current job
and execute "SY:TSKMON.SAV". User job numbers must be greater than zerod.

SOF-Stack overflow
One of the three system stacks has overflowed. The argument value
indicates which stack has overflowed.

SSE-PLAS region swap file I/0 error
A hardware I/0 error was detected while reading or writing a PLAS region
to the swap file. The device used for the PLAS swap file is specified in
TSGEN with the RSFBLK parameter.

UEI-Interrupt occurred at unexpected location

An interrupt occurred through a vector that was not attached to a terminal
or CL line, a device handler, or a real-time completion routine. The
parameter UXIFLG in TSGEN controls the handling of unexpected interrupts.
When UXIFLG is set to zero, unexpected interrupts are ignored and never
reported. When UXIFLG is set to one, the above error message is reported
along with an argument value which identifies the vector location of the
unexpected interrupt.

-135-

-136-

)

Necguams’

.CTIMIO requests, 33
.FORK requests, 31
.SYNCH requests, 33
.TIMIO requests, 33
22-bit addressing
Devices on LSI-11 bus, 31
ACCESS authorization file, 9
ACCESS command, 23
Use with logical disks, 25
Account authorization
see TSAUTH program, 9
Account usage statistics, 15
ADM3a support
SYSMON program, 111
ALLOCATE privilege, 3
Authorizing an account, 12
BA handler, 29
Batch support, 29
BYPASN program attribute, 26
BYPASS privilege, 3
Cl handler
see CL handler
CACHE parameter
Optimizing, 106, 124
Caching, 104
Data, 105, 106
Directories, 105
CHARGE command
TSAUTH program, 15
Charge information, 15
CL handler, 41
As a spooled device, 49
Cross connection, 50
Flow control, 42
Input character processing, 56
Installing, 41
Modem control, 41, 46, 59
Output character processing, 58
Special functions, 44
VTCOM/TRANSF support, 49
CMDFIL macro, 20
Command files
Log—off, 22
Start-up, 20
Communication
TSX-Plus to other machines, 50
Completion requests, 33

Index

Connect time
Determination of, 15
CORTIM parameter
Optimizing, 101
CPU modes display, 121
CPU time
Determination of, 15
Data caching, 105, 106
Deauthorizing an account, 14
DEBUG privilege, 3
Debugging device handlers, 38
DETACH privilege, 3
Device handlers
Attributes, 35
Building, 34
Cl, 41
CL, 41
Debugging, 38
DM, 50 ,
Error logging support, 33
Error returns, 40
Extensions, 29
I1/0 initiation code, 40
IB, 51
Installation, 29
Internally queued, 40
Job number, 30
LSI-11 bus extension, 31
Queue element format, 29
Restrictions, 29

RT-11 version number checking,

29

see CL handler

see Programmed requests

see Terminal handler

Sysgen requirements, 33

Time-out support, 33

Unsupported, 29

Use of PAR 1, 30

Use of PAR 5, 30

Use of PAR 6, 30

VM, 51, 109
DH(V)1l interface catds, 59
DILOG DQ215, 31, 50
Directory cache display, 122
Directory caching, 105
DL(V)1l interface cards, 59
DM handler, 50
DZ(V)1l interface cards, 59
EIA RS-232-C, 60
EL handler, 29

-137-

" Index

Emulex SC02C, 31, 50
Error logging support, 33
Error messages
System, 133
System startup, 127
Execution priority limit, 10, 13
Execution states, 85
File access control
ACCESS command, 23
File access security, 19
GETCXT privilege, 3
Global regions
Privilege to use, 5
GROUP privilege, 3
HAZELTINE support
SYSMON program, 111
HIGH program attribute, 27
HIPRCT parameter
Optimizing, 102, 103
1/0
see Device handlers
see Terminal handler
I/0 optimization, 102
Data caching, 104
Device spooling, 104
Execution overlap, 102
I/0 queue elements, 29
IB handler, 51°
IBSRQ unsupported, 51
IEEE handler
see IB handler
In-line interrupt service routines,
29
INSTALL command, 25
Interactive job scheduling, 86
Interface cards
DH(V)1l type interface, 59
DL(V)1l type interface, 59
DZ(V)1ll type interface, 59
Power consumption, 59
Internally queued device handlers,

Interrupt processing, 90
INTIOC parameter
Optimizing, 98, 99
IOABT parameter
Needed for VTCOM, 49

IOPAGE program attribute, 27
Job swapping, 89
KILL command
TSAUTH program, 14
LD handler, 29
Listing account information, 15
LOCK program attribute, 27
Locking a program to a line, 22
Log-off command files, 22
Logical disks
ACCESS command, 25
LOGON facility, 22
LSI-11 bus extension, 31
MEMLOCK program attribute, 27
MEMMAP privilege, 4
SYSMON program, 111
Memory management support
and Device handlers, 33
MEMSIZ parameter
and VM handler, 51
MESSAGE privilege, 4
Modem control
SPHONE flag, 59
Modems, 66
"Intelligent” modems, 67
$PHONE declaration, 66
Loss of carrier, 67
OFFTIM parameter, 66
SET TT PHONE command, 66
TIMOUT parameter, 66
Wiring, 66
Modifying an account, 14
MOUNT command
Use with ACCESS command, 25
NFSREAD privilege, 4
NFSWRITE privilege, 4
NONINTERACTIVE program attribute,
27 .
NOWAIT program attribute, 27
NUMDC parameter
Optimizing, 105, 123
OPER privilege, 4
SYSMON program, 111
Operator privileges, 11
Optimizing system parameters, 95
Organization of the system, 77
Overview of the system, 77
PAR 1 use by device handlers, 30
PAR 5 use by device handlers, 30

-138-

PAR 6, use by device handlers, 30
Password, 10, 12
Privilege to change, 5
PD handler, 29
Performance monitor, 101
PRIDEF parameter, 85
PRIHI parameter
Job scheduling, 83
PRILOW parameter
Job scheduling, 83
Priority
and Job scheduling, 83
Controlling maximum allowed, 25
Privileges, 3
Authorizing, 8
Displaying authorized, 8
Displaying current, 8
EMT to change, 8
Operator accounts, 11
Ordinary accounts, 11
Setting, 7
Setting authorized, 7
System manager accounts, 11
TSAUTH program, 10, 13
Typical groups, 11
PRIVIR parameter, 85
Process execution status display,
116
Process name
Privilege to change, 5
Process windows ‘
Privilege for, 11
Programmed requests
.CTIMIO, 31
.CTIMIO extensions, 33
.DRAST, 31
.DRBEG, 31
.DRBOT, 31
.DRDEF, 31
.DREND, 31
.DRFIN, 31
.DRSET, 31
.DRVTB, 31
.FORK, 31
.FORK extensions, 31
.INTEN, 31
.MFPS, 31
.MTPS, 31
.SYNCH, 31

.SYNCH extensions, 33
.TIMIO, 31
.TIMIO extensions, 33
Project-programmer number, 9, 12
PSWAPM privilege, 4
QUANO parameter
Optimizing, 101
QUAN1 parameter
Optimizing, 98, 99
QUAN1A parameter
Optimizing, 102, 104
QUAN1B parameter
Optimizing, 98, 100
QUAN1C parameter
Optimizing, 98, 100
QUAN2 parameter
Optimizing, 98, 100
QUAN3 parameter
Optimizing, 101
Queue elements, 29
Queued message display, 119
R command
/LOCK switch, 22
Real-time support
Interrupt completion routines,
920
Interrupt processing, 90
Interrupt service routines, 90
REALTIME privilege, 4
Required privileges
SYSMON program, 111
Restrictions
DM handler, 50
IB handler, 51
VM handler, 51
RKO6/RK07 handler, 50
RLOCK privilege, 4
Run command
/LOCK switch, 22
SAME privilege, 5
Security of file access
see System security, 19
SEND privilege, 5
SET CACHE command, 106
SET LOGOFF command, 22
SET MAXPRIORITY command, 25
SET PROCESS command, 7
SET SIGNAL command, 97
SET SUBPROCESS command, 21

-139-

Index

SET SYSPASSWORD command, 20
SETNAME privilege, 5
SETPRV privilege, 5
SETSIZ program, 97
SHOW PRIVILEGE command, 8
SHOW SYSPASSWORD command, 20
SINGLECHAR program attribute, 27
SPFUN privilege, 5
Spooling
CL device, 49
STANDARD privilege, 7
Start-up command file, 10, 13
Start-up command files, 20
Controlling listing of, 21, 23
for subprocesses, 21
Interaction, 22
Use with LOGON program, 23
Starting TSX-Plus
with System debugger, 39
SUBPROCESS privilege, 5
Swapping of jobs, 89
SYSGBL privilege, 5, 11
SYSMON dynamic display utility,
111 .
CL device display, 125
CPU modes display, 121
Creating and running, 111
Data cache display, 124
Directory cache display, 122
Message channel display, 119
Privilege required, 111
Process execution status display,
116
Shared file data cache display,
123
System status display, 114
Terminal status display, 118
User times display, 120
SYSODT.REL, Use of, 38
SYSPRV privilege, 5
SYSMON program, 111
System genearation parameter
TBLDEF, 70
System generation parameter
$PAGE, 72
SPHONE, 59, 66
BUFSIZ, 55, 58
CLDEF, 48
CLORSZ, 58
CLXTRA, 48

DHDEF, 71
DHDEV, 70
DHVDEF, 70, 71
DINSPC, 55
DOTSPC, 58
DZDEF, 71
DZDEV, 70
FLAGS, 72
LINDEF, 70, 71
LINEND, 72
MEMSIZ, 51
MUXEND, 72
NCSILO, 54
NCXOFF, 54
NCXON, 54
OTRASZ, 58
SILO, 54
SPEED, 72
TRMTYP, 72
System manager privileges, 11
System operation, 77
System password, 19
System security, 19
Start-up command files, 20
System password, 19
System status display, 114
System tuning, 95
Terminal handler
7 data bits, 64
8 data bits, 64
Automatic baud rate, 62
Break key, 63
Character frames, 62
DH(V)1ll type interface, 59
DL control registers, 73
DL(V)1l type interface, 59
DZ(V)1l type interface, 59
ETA RS-232-C, 60
Framing error, 63
Hardware address, 72
Input character processing, 53
Input fork level processing, 55
Input program level processing,
56
Interface cards, 59
Interrupt level processing, 54
Loss of carrier, 67
Modem control, 59, 66
Modem wiring, 66
Multiplexer, 71

~140-

e’

Index

Output character processing, 57 MODIFY command, 14
Output interrupt level processing, Password, 10, 12
58 Privileges, 10, 13
Output program level processing, Project-programmer number, 9,
57 12
Parity, 62 RESET command, 16
Parity selection, 59 Start—up command file, 10, 13
Speed control, 59 USAGE command, 15
Transmission format, 61 User name, 9
Troubleshooting, 72 TSXDB.SAV, Use of, 38
Wiring connections, 60 TT handler
XON/XOFF control during input, see Terminal handler
54 TT/CL cross connection, 50
XON/XOFF flow control, 61, 64 Tuning the system, 95
TERMINAL privilege, 5 TVI-912 support
Terminal status display, 118 SYSMON program, 111
Time-out support (device handlers), Unsupported device handlers, 29
33 UP1l privilege, 6
TRANSF program, 49 Usage information, 15
TRANSPARENT program attribute, 27 User name, 9
TSAUTH program, 9 User times display, 120
Account entry information, 9 User—defined privileges, 6
AUTHORIZE command, 12 Virtual lines
CHARGE command, 15 privilege to use, 5
Command summary, 12 VM handler, 51, 109
Creating access file, 9 VICOM program, 49
EXIT command, 16 Windows
Indirect files, 16 Printing, 92
KILL command, 14 Privilege for, 11
LIST command, 15 WINPRT program, 92
Max execution priority, 10, 13 WORLD privilege, 6

-141-

