TSX-Plus
System Manager's
Guide

s&h computer systems, inc.

Negyye”

TSX-Plus

System Manager’s

Guide

s&h computer systems, inc.

Fifth Edition
First Printing -- November, 1985

Copyright © 1980, 1981, 1982, 1983, 1984, 1985.
S&H Computer Systems, Inc.

1027 17th Avenue South

Nashville, Tennessee USA

37212-2299

615-327-3670

The information in this document is subject to change without notice and should
not be construed as a commitment by S & H Computer Systems Inc. S & H assumes
no responsibility for any errors that may appear in this document.

NOTE: TSX®, TSX-Plus®, PRO/TSX-Plus™, COBOL-Plus®, PRO/COBOL-Plus™, RTSORT®,
and PRO/RTSORT™ are proprietary products owned and developed by S&H Computer
Systems, Inc., Nashville, Tennessee, USA. The use of these products 1is
governed by a licensing agreement that prohibits the licensing or distribution
of these products except by authorized dealers. Unless otherwise noted in the
licensing agreement, each copy of these products may be used only with a single
computer at a single site. S&H will seek legal redress for any unauthorized
use of these products.

A license for RT-11 is required to use this product. S&H assumes no responsi-—
bility for the use or reliability of this product on equipment which is not
fully compatible with that of Digital Equipment Corporation.

Use, duplication, or disclosure by the Govermment is subject to restrictions as
set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and
Computer Software clause at 52.227-7013.

Questions regarding the licensing arrangements for these products should be
addressed to S&H Computer Systems, Inc., 1027 17th Ave. South, Nashville,
Tennessee 37212-2299, 615-327-3670, TELEX 786577 S AND H UD.

TSX, TSX-Plus, PRO/TSX-Plus, COBOL-Plus, PRO/COBOL-Plus, RTSORT, PRO/RTSORT,
Adaptive Scheduling Algorithm, and Process Windowing are trademarks of S&H
Computer Systems, Inc. DEC, DIBOL, PDP, Professional 300 Series, Q-BUS, RT-11,
UNIBUS, VAX, VMS and VT are trademarks of Digital Equipment Corporation. DBL
is a trademark of Digital Information Systems Corporation.

CONTENTS

INTRODUCTION &+« « v ¢ & ¢ o o « o o o o o &
Chapter 1

PRIVILEGES . + ¢ v ¢ v o ¢ o o o o « o o o
Chapter 2

ACCOUNT AUTHORIZATION PROGRAM

Account entry information

Command summary . . « « « « « ¢ o o
Authorizing an account
Modifying an account . .« « « « « . .
Deauthorizing an account

Listing information about accounts .
Listing account usage statistics . .
Creating a charge information file .
Resetting account usage statistics .
Exiting from TSAUTH
Use of indirect files within commands

Chapter 3

SYSTEM AND FILE ACCESS SECURITY

System password feature

Start-up command files

Log—off command files . . « « . « . .

The RUN/LOCK switch

Use of the LOGON facility

The ACCESS command . « « « « « « « &

The SET MAXPRIORITY command
INSTALL command . « « « « « « « o &
Chapter 4

DEVICE HANDLERS .+ ¢ « ¢ ¢ ¢ ¢ ¢ o o o o &

Device handler extensions and restrictions

RT-11 version number checking .
I/0 queue element extension . .
Device handlers use of PARs .
Extensions for the LSI-11 bus .
Device handler programmed requests .
.FORK requests . « « « « + o«

Contents - 1

. o e

. o o

12
12
14
14
15
15
15
16
16
16

19
19

22
22
22
23
25

29
29
29
29
30
31
31
31

.SYNCH and completion requests
.TIMIO and .CTIMIO requests

.

. e

Generating device handlers for use under TSX-Plus

Building device handlers
Defining device handler attributes . . .
Debugging a device handler
Internally queued device handlers

Chapter 5

PROGRAMMING FOR SPECIAL DEVICE HANDLERS

Special TSX-Plus device handlers
Communication line handler (CL) . . .
VTCOM/TRANSF support and the CL handler

.

o o

. .

Terminal/Communication line cross connection .

RKO6/RKO7 handler (DM) . . « « « v « « .
IEEE GPIB handler (IB) . . « .« + « . . .
Virtual memory handler (VM)

Chapter 6

TERMINAL AND CL INPUT/OUTPUT PROCESSING

Terminal input character processing

Interrupt level input character processing

Fork level input character processing .

Input character processing
CL input character processing
Terminal output character processing

Program level output character processing

Interrupt level output character processing

CL output character processing
Terminal and modem protocols
Interface cards o
Wiring « ¢ ¢ o ¢ ¢ v v v v e 0 e 0 e .
Communication parameters . . «
Character frames
Parity . .« « « ¢ ¢ o o 0 o . ..
Automatic baud rate determination .
Break keys o0 .0 .
7 or 8 data bits
Flow control (XON/XOFF) . . . « « « . .
Terminals . « ¢ & ¢« « ¢ ¢« o o « 4 0
Modems . . « v v ¢ v v ¢ 4 v 4 4 e e e
TSX-Plus system generation of terminal lines .
TBLDEF & v ¢ v & o ¢ o o o o o o &
Multiplexer definitions (DZDEF, DHDE
LINDEF .« ¢ v v ¢ @ ¢ o ¢« o o o o &
LINEND and MUXEND . « « & « + & + .
Troubleshooting + « « v « « .
A note about hardware addresses . .
Unknown configuration
Using ODT « « ¢ +v ¢ ¢ & o o o o o &

Contents - 2

o

o e

F and

o o

DHVDEF)

.

41
41
41
49
50
50
51
51

53
53
54
55
56
56
57
57
58
58

59
60
61
62
62
62
63
64
64
65
66
70
70
71
71
72
72
72
72
73

e

" Replace the device
Break-out boxes
References . . v ¢ ¢ ¢ ¢ o o o o &

Chapter 7

SYSTEM OPERATION « « ¢ ¢« ¢« ¢ ¢ & o o o o« o &
Memory organization
Physical layout of TSX-Plus . . .

User memoTry .« « o o ¢ o o o o o o

I/0 mapping « « « ¢ ¢ o o ¢ ¢ 4 o 4 0 .
Job scheduling « . « + + . .
Job priorities
Execution states

Job scheduling algorithm

Job swapping . . « .+ ¢ ¢ o 0 0 e . .
Real-time interrupt processing
Interrupt service routines
Interrupt completion routines . .
Window Print Operation « . .

Chapter 8

SYSTEM TUNING '+ &« & ¢« ¢ ¢ o v o o o o o o &

Memory utilization

System memory utilization

User program memory utilization .

Job scheduling optimization

User program optimization

I/0 optimization . + « « ¢ ¢ ¢ « & . .

I1/0 wait overlap with computation
Device spooling

Caching = . . . « ¢« ¢« ¢« ¢« v v o o
Virtual memory handler (VM) . .

Chapter 9

SYSMON - DYNAMIC SYSTEM DISPLAY UTILITY . .
Creating and running SYSMON
SYSMON menu . . « « « « & o« « o o o« &
System status display
Process execution status display . . .
Terminal status display
Message channel display . . . «
User times display . . . « « « « « . .
CPU modes display . « « « « « « « o o
Directory cache display
Shared file data cache display . . .
Data cache display
CL device display « « « « « v « « « « &
Exiting SYSMON ¢« « « « « « « .

Contents - 3

75
75
76

95
95
95
926
97
101
102
102
104
104
109

111
111
113
114
116
118
119
120
121
122
123
124
125
125

STARTUP ERROR MESSAGES .

SYSTEM ERROR MESSAGES .

.

Appendix A

Appendix B

Contents - 4

127

133

N

INTRODUCTION

The purpose of the TSX-Plus System Manager”s Guide is to provide information
necessary to manage the system resources for the TSX-Plus operating system.. It
is intended to provide more detailed information on the internal operation of
TSX-Plus for people who are already familiar with the features provided. See
the TSX-Plus Reference Manual for information on the features provided by
TSX-Plus.

Chapter 1 - Privileges and Privilege Commands

TSX-Plus provides twenty seven privileges to be specified on a line-by—-line or
user—by—user basis. Privileges may be specified during program installation
which temporarily authorized program execution without granting privilege to
the user.

Chapter 2 - Account Authorization Program

An account authorization program may be used by the system manager to grant
access to the system by authorizing accounts. The facility allows the system
manager to group accounts by project/programmer number, assign privileges, and
set the maximum job execution priority. Execution of a start-up command file
can also be specified which may contain system and file access security
restrictions.

Chapter 3 - System and File Access Security

The system manager can impose certain restrictions on system use and file
access by selecting available security options. Terminal lines or authorized
users can be locked to a program, limited in access to devices or files, or
restricted to a maximum priority for program execution.

Chapter 4 - Device Handlers

The information in this chapter provides the system manager (and system
programmers who wish to write special device handlers) an understanding of the
extensions and restrictions imposed on device handlers in the TSX-Plus
environment. Building and debugging device handlers is discussed.

Chapter 5 - Programming for Specific Device Handlers
Special device handlers are provided (or restricted) for use in the TSX-Plus
environment. Information concerning the programming and use of these special

device handlers (CL, DM, IB, and VM) is presented.

Chapter 6 -~ Terminal and CL I/O Processing

The information in this chapter provides the system manager with an under-
standing of the internal operation of the terminal and communication line (CL)
handler. Modem control and the RS232 pin connection required for phone support
are discussed.

Chapter 7 - System Operation

An understanding of the internal operation and organization of TSX-Plus
provides the system manager with the the basic knowledge necessary for
optimizing system performance. The system overview provides information
concerning memory organization (with a detailed map of the TSX-Plus physical
memory layout), I/0 mapping, and execution scheduling (including a job
scheduling flow diagram and algorithm).

-1-

Introduction

Chapter 8 - System Tuning
With the basic knowledge of the organization and operation of TSX-Plus, the
system manager can utilize various tools to better optimize the TSX-Plus
execution environment. Suggestions concerning optimization for memory, I/0,
and execution scheduling are provided.

Chapter 9 - SYSMON - Dynamic System Display Utility
The SYSMON utility displays information about system activities and resources.
This wutility can help the system manager gain more information about the

specific environment to facilitate resource optimization.

Appendices

Appendix A describes the error messages which can be generated by TSX-Plus when
it is started (R TSX). Appendix B describes the fatal system error messages
generated when abnormal conditions occur during operation of TSX-Plus.

1. Privileges

Each job has associated with it a set of privilege flags that control which
system services are available to the job. Privilege authorization 1is con-
trolled by the system manager and may be allocated on a line-by-line basis or,
if the LOGON facility is used, on an account-by—account basis. See the chapter
describing the TSAUTH program for information about authorizing accounts with
specific sets of privileges.

1.1 Privilege names

The following list of privileges shows the privilege keyword (e.g., ALLOCATE),
the privilege word (1 or 2) which contains the privilege flag bit, and the bit
position corresponding to the privilege flag within the word (0 to 15). The
word and bit positions are provided for use with the TSX-Plus system service
call (EMT) that is used to check and modify privileges. See chapter 7 of the
TSX-Plus Reference Manual for information about this EMT.

ALLOCATE [1/14] (Allocate a device)
o Perform ALLOCATE command or issue EMT to allocate a device.

BYPASS [1/9] (Bypass device/file access restrictions)
o Allows access to .TSX and .SYS files.
o Allows access to any device (that is not allocated by someone else).
o Allows non-file-structured lookups.

DEBUG [1/13] (Use debugging facilities)
o RUN/DEBUG a program.
o SET CTRLD DEBUG.
o SET EMT TRACE.

DETACH [1/12] (Affect detached jobs)
o Start or kill detached jobs, commands or EMT’s.

GETCXT [2/7] (Get file context from another job)
o Use of TSX-Plus EMT to copy the file context from another job. A job
with GETCXT privilege may gain access to the files of any other
executing job.

GROUP [2/13] (Affect jobs with same project number)
o Perform the following operations on any job which has the same project
number as the job issuing the command:
1. Issue KILL EMT.
2. Issue KILL command.
3. Change another job”s priority (within range allowed to changer).
4. Suspend or resume execution.

Privileges

MEMMAP [1/10] (Access memory that may be significant to system, e.g., I/0 page)
EMT”s to peek/poke, BIS/BIC into I/0 page.

-PEEK, .POKE requests outside of RMON (low memory or I/0 page).
RUN/IOPAGE command.

EMT to map to I/0 page or back to RMON.

EMT to map to physical memory.

O 00 OO

MESSAGE [2/10] (Named message channels)
o Use named message channels.

NFSREAD [1/2] (Non-file-structured read access)
o Allow non—-file-structured lookup on directory structured device with
read-only access. (Needed to run PIP or DIR.)
o Allows use of commands: COPY, CREATE, DELETE, DIRECTORY, PRINT, RENAME,
TYPE (Some options to these commands may require NFSWRITE privilege.)

NFSWRITE [1/1] (Non-file-structured access)
o Allow non-file-structured lookup on directory structured device and
reads and writes.
o Allows wuse of FORMAT, INIT, SQUEEZE, COPY/DEVICE, and other DUP

functions.

OPER [1/8] (Operator)
o Set system date and time (keyboard command and EMT s).
o Perform any SET to device handler.
o BOOT, $STOP, $SHUTDOWN commands.
o SPOOL commands (ALIGN, LOCK, FORM, SKIP, BACK, SINGLE, MULT, HOLD,
NOHOLD). OPER privilege is not required for SPOOL,STATUS and
SPOOL,DELETE commands.

PSWAPM [1/7] (Change process swap mode)
o EMT to lock job in memory or reenable swapping.
o RUN/MEMLOCK command.

REALTIME [1/6] (Real-time EMT s)
o .DEVICE request.
o EMT to gain exclusive system control.
o EMT to set processor priority level.
o EMT to attach interrupts to service or completion routines.
o EMT to release an interrupt connection.

RLOCK [2/9] (Shared file record locking)
o Use shared file access control or record locking.

N

Privileges

SAME [2/12] (Affect another job with same PPN)
o Perform the following operations on any job which has the same project
and programmer number as the job issuing the command:
1. Issue KILL EMT.
2. Issue KILL command.
3. Change another job”s priority (within range allowed to changer).
4. Suspend or resume execution.

SEND [1/5] (Sending messages between jobs (not named message channels))
o SEND command or EMT to send message to another line.

SETNAME [1/4] (Change user name or password)
o SET PROCESS/NAME=name command.
o EMT to change process name.
o Change own password.

SETPRV [1/3] (Affect own privileges)
o SET own privileges beyond those authorized.

SPFUN [1/11] (Use .SPFUN EMT for directory structued devices) :
o Allow .SPFUN (special function) operations to directory structured
devices. (Needed to initialize some disks.)

SUBPROCESS [2/11] (Use subprocesses)
o Ability to use subprocesses

SYSGBL [2/8] (Global regions)
o Use named global regions. This privilege is also required to use
terminal display windows since they create global regions.

SYSPRV [1/0] (System privilege — System management operations)

Access .SYS and .TSX files.

INSTALL ADD/DELETE command.

SHOW INSTALL command.

RESET command.

SET CACHE, IO ABORT, CORTIM, HIPRCT, INTIOC, NUMDC, QUANx, SYSPASSWORD.
Use the TSAUTH program under TSX-Plus.

O 0 oo 0o

TERMINAL [2/15] (Terminal and CL commands)
o Perform any SET TT to line other than your own.
Make permanent SET to your own line.
Change line speed, parity, bits—per-character, SYSPASSWORD control.
Issue EMT to change' line speed, parity, bits—per—character.
Perform any SET CL command.
Issue EMT to assign CL unit to a line.
Issue SET HOST command to cross connect a time-sharing line with a CL
line.

©O OO0 OO0 O

Privileges

UP1 [2/0] (User-defined privilege 1)
UP2 [2/1] (User-defined privilege 2)
UP3 [2/2] (User-defined privilege 3)
UP4 [2/3] (User-defined privilege 4)

WORLD [2/14] (Affect any job)
o Perform the following operations on any job:
1. Issue KILL EMT.
2. Issue KILL command.
3. Change another job”s priority (within range allowed to changer).
4. Suspend or resume execution.
o Affect detached jobs started automatically by system initialization
(jobs specified by DETACH command in TSGEN).

The four user—defined privileges, UPl, UP2, UP3, UP4, have no effect on system
operation but are maintained by the system in the same fashion as the other
privilege flags. User programs may check the setting of these privileges and
base their operation on them.

1.2 Setting job privileges

At any time during the execution of a job, there are three sets of privilege
flags associated with the job:

1. Authorized privileges.
2. Set privileges.
3. Current privileges.

The authorized privileges are those privileges for which the job is authorized.
These are set by TSAUTH when an account is authorized, or by the SET
PROC/PRIVILEGES/AUTHORIZED command.

The set privileges are those privileges which have been specified by use of the
SET PROCESS command or the TSX-Plus EMT for setting privileges. Unless the job
has SETPRV privilege, the set privileges will not exceed the authorized

privileges.

The current privileges are the privileges currently in effect for the job.
These privileges are selected as each program is started based on the set
privileges and program—dependent privilege specifications for installed
programs. A TSX-Plus EMT is available to allow running programs to change the
current privileges.

;
N

Privileges

The SET PROCESS keyboard command can be used to alter job privileges as well as
other job characteristics. The form of this command is:

SET PROCESS [/PRIORITY=value] [/IDENTIFICATION=value]
[/SUSPEND] [/RESUME]
[/NAME=string]
[/PRIVILEGES=(privileges)[/AUTHORIZED]]

See the TSX-Plus Reference Manual for information about using the SET PROCESS
command for changing process parameters other than the privilege flags.

The /PRIVILEGES qualifier is used to specify a list of privileges. If more
than one privilege is being specified the privilege keywords are enclosed in
parentheses and separated by commas. If only a single privilege keyword is
specified, the parentheses may be omitted. The word "NO" may be concatenated
with a privilege keyword to cause the privilege to be removed from the job.
For example, the following command grants the ALLOCATE privilege and removes
the SUBPROCESS privilege:

SET PROCESS/PRIVILEGES=(ALLOCATE,NOSUBPROCESS)

In addition to the privilege keywords and their NO-complements, the following
special privilege keywords may be specified:

ALL -— All privileges

NONE -— No privileges

STANDARD -- Standard privileges (ALLOCATE, DEBUG, DETACH, SPFUN, SEND,
SETNAME, NFSREAD, NFSWRITE, SAME, SUBPROCESS, MESSAGE, RLOCK).

These special keywords may be used in conjunction with other keywords to select
sets of privileges. When this 1is done the special keyword (ALL, NONE, or
STANDARD) should be specified as the first privilege followed by additional
privilege keywords. For example, the following command grants all privileges
except REALTIME, SETPRV, and MEMMAP:

SET PROC/PRIV=(ALL,NOREALTIME,NOSETPRV,NOMEMMAP)
The following command grants the standard privileges plus the OPER privilege:

SET PROC/PRIV=(STANDARD,OPER)

The /AUTHORIZED qualifier can be used in conjunction with the /PRIVILEGE
qualifier to cause the authorized privilege flags to be affected as well as the
set and current privileges. If the /AUTHORIZED qualifier is not specified,
only the set and current privileges are affected. The following command sets
the standard privileges as the authorized, set, and current privileges for the
job:

SET PROC/PRIV=STANDARD/AUTHORIZED

Privileges

Note that this command affects the authorized privileges for the job only
during the current job session.

The SET PROCESS command can always be used to remove a privilege from the

authorized, set, and current privileges for the job. Privileges can only be
granted for a job if the job is authorized for the privileges or if the job has
SETPRV privilege which allows the job to override the authorized privileges and

set any privilege.

The SHOW PRIVILEGE keyboard command can be used to display the authorized and
current privileges for the job.

1.3 Initial job privileges

If the LOGON facility is used, a set of privileges may be specified for each
account. See chapter 2 of this manual for information about authorizing
accounts and setting privileges.

When a job is initiated it is authorized for all privileges. Privileges may be
restricted by either of two methods: (1) the SET PROCESS/PRIV/AUTHORIZED
command, or (2) the LOGON program. If the LOGON program is being used, a
command of the form R LOGON should appear in the start—up command file for the
line. When the LOGON program executes, it will set the privileges for the job
based on privileges specified for the account by the TSAUTH program. If the
LOGON program is not used, the job will have full privilege unless a SET
PROC/PRIV/AUTHORIZED command is placed in the start-up command file.

A TSX-Plus EMT is available to allow running programs to determine the
privilege sets for the job and to change privileges. See chapter 7 of the
TSX-Plus Reference Manual for information about this EMT.

2. ACCOUNT AUTHORIZATION PROGRAM

TSAUTH, the TSX-Plus account authorization program, is used to authorize
accounts for access to the system when the LOGON facility is used. It is also
used to display the use accounting statistics that are collected by the LOGON
facility.

A user must have SYSPRV privilege to run TSAUTH under TSX-Plus. However,
TSAUTH may also be run directly under RT-11 without TSX-Plus. In a hostile
environment it might be desirable to restrict access to the TSX-Plus distri-
bution media and to keep the TSAUTH program on a removable medium rather than
keeping it on the system disk. TSAUTH creates a file on SY named "ACCESS.TSX".
Note that SYSPRV or BYPASS privilege is required to create or execute any file
with the extension "TSX". ‘

Whenever TSAUTH is started it checks to see if an account authorization file
already exists. If not it prints the message:

Cannot open account authorization file "SY:ACCESS.TSX"
Do you want to initialize a new authorization file?

If you respond "YES" (or "Y") to this question it will ask you how many
accounts you want to reserve room for in the file. Respond by entering the
maximum number of accounts that you anticipate ever needing to have authorized
at any one time. As o0ld accounts are deauthorized, file space is recovered
that can be used for new accounts. Note however that the only way to enlarge
the ACCESS file is to delete it and build a new, larger one from scratch. Do
not underestimate the potential number of accounts desired.

2.1 Account entry information

Each entry in the account authorization file contains a user name, a project-
programmer number, a password, the name of a start-up command file, priority
and privilege information, and resource usage statistics.

The user name is a string of up to 12 characters which is used when logging
onto the system; it is also used with TSAUTH commands to identify an account.
Each account must have a unique user name.

The project-programmer number is a pair of numbers. The first number is the
project number, the second number is the programmer number. The project—-
programmer number is written with a comma separating the numbers. The project
and programmer numbers must be integer values in the range 1 to 65534.
Normally the user name is used to log on and identify and account and the
project—-programmer number has little significance (TSAUTH will automatically
assign a project—programmer number if one is not specified). However, if a job
bas GROUP privilege, it can perform certain operations on other jobs with the
sare project number (such as aborting the job), hence the same project number
should not be assigned to two jobs that have GROUP privilege unless this type
of access is desired. TSAUTH allows a wildcard character ("*") to be specified
for the project and/or programmer number with some of its commands, so it is is
desirable to assign a common project or programmer number to accounts that will
be managed as a group. Each account must have a unique project-programmer
nunber combination.

-9-

Account Authorization

A password is a string of 1 to 7 characters that is used as a security
verification when logging onto the system. Accounts are not required to have
passwords (although it is strongly recommended that they do). If an account
does not have an assigned password, the user may log on by specifying only the
user name for the account. The account password is normally assigned when the
account is authorized and may be changed with the TSAUTH MODIFY command. If an
account has SETNAME privilege, the user may change the password at the time
that they log on. For security reasons, TSAUTH will not display account
passwords. Hence, if a user forgets the password the correct procedure is to
use the TSAUTH MODIFY command to assign a new password. Passwords do not need
to be unique.

A start-up command file is an indirect coumand file that is executed when an
account logs on. There are two types of start-up command file. One type of
start—up command file is associated with each time-sharing line. This command
file is executed whenever the line is initialized (i.e., at system startup time
if the line is specified to be automatically started, or when carriage return
is received for lines that are not automatically started). This line-dependent
start—-up command file may contain a "R LOGON" command to cause the logon
program to be run when the line is initiated. The second type of start-up
comnand file is associated with each account. This type of command file is
executed when the account logs on. Thus the first type of start-up command
file executes from the time the line is initiated up to and including the
execution of the LOGON program. The second type of start—up command file is
executed following the LOGON program and is determined by which account logs
on. The line-dependent start—up command file is specified in TSGEN within the
line definition block. The account—dependent start-up command file is
specified with TSAUTH. The start-up command file specification may be up to 15
characters long and may contain a device name as well as a file name and
extension. Accounts are not required to have associated start-up files and
start—up file specifications need not be unique between accounts.

The maximum execution priority limits the execution priority that may be used
by the account. This may be from 1 to 127. The default execution priority
(and default maximum execution priority) is 50.

Account privileges determine which system services are available to the
account. Privileges are specified as a set of privilege names which may be on
(privilege granted) or off (privilege denied). Chapter 1 provides complete
information about each privilege; a summary of privilege keyword names and
functions is shown below:

-10-

Nz

S’

Account Authorization

Privilege Function

ALLOCATE Allocate a device

BYPASS Bypass device/file access restrictions

DEBUG Use system debugging facilities

DETACH Start or kill detached jobs

GETCXT Get file context from another job

GROUP Affect other jobs with the same project number
MEMMAP Access system memory (e.g., I/0 page)

MESSAGE Send and receive messages

NFSREAD Perform non-file-structured reads

NFSWRITE Perform non-file-structured writes

OPER Operator functions (e.g., set time, spool control)
PSWAPM Change process swap mode (i.e., lock in memory)
REALTIME Real-time system services (e.g., interrupt connect)
RLOCK Shared file record locking and access control

SAME Affect another job with same project—programmer number
SEND Send a message to another terminal

SETNAME Change job name or password

SETPRV Set privileges beyond those authorized

SPFUN Allow .SPFUN operations to directory structured devices
SUBPROCESS Use subprocesses (virtual lines)

SYSGBL Use named global regions and display windows

SYSPRV System manager functions (e.g., authorize accounts)
TERMINAL Terminal and CL line control (e.g., set line speed)
UP1 User—defined privilege 1

UpP2 User—-defined privilege 2

UP3 User—defined privilege 3

UP4 User-defined privilege 4

WORLD Affect any job

Most sites find it convenient to group accounts into three categories based on
the type of privileges they require: (1) ordinary accounts which don”t need
any special privileges; (2) operator accounts used by people who run the
computer but don"t need to authorize accounts or tune the system; and (3)
system manager accounts. The following sets of privileges are recommended for

each of these account types:

Ordinary accounts: ALLOCATE, DEBUG, DETACH, SPFUN, SEND, SETNAME, NFSREAD,

NFSWRITE, SAME, SUBPROCESS, MESSAGE, RLOCK.

Operator accounts: Same as ordinary accounts plus OPER, TERMINAL, WORLD.

System manager accounts: All privileges.

Ordinary and operator accounts must also be given SYSGBL privilege if the
process windowing facility is to be used.

-11-

Account Authorization

2.2 Command summary

The following commands may be used with the TSAUTH program:

Command Function

AUTHORIZE Authorize an account

MODIFY Modify information associated with an account
KILL Deauthorize an account

LIST List information about accounts

USAGE List account usage statistics

CHARGE Create a charge file

RESET Reset account usage statistics

EXIT Exit from the TSAUTH program

TSAUTH commands begin with a keyword (AUTHORIZE, MODIFY, KILL, etc.) followed
(in most cases) by the user name associated with the account. Commands may be

continued by typing a minus sign ("-") as the last character on the line to be
continued and then typing the continuation of the command on the next line.

2.3 Authorizing an account

The form of the command used to authorize a new account is:

AUTHORIZE username [/qualifiers...]

where "username” is the account user name which may be up to 12 characters
long, and "qualifiers” include the following specifications:

/PPN=project,programmer specifies the project-programmer number to be associa-
ted with the account. The first number of the pair is the project number, the
second number is the programmer number. If a PPN is specified, it must be
unique. If the /PPN qualifier is not specified, TSAUTH will automatically
assign a unique PPN for the account. It does this by assigning project and
programmer numbers which are one larger than the current largest PPN of any
authorized account. The automatically generated numbers are never smaller than
100. If you wish to specify either the project or the programmer number but
allow TSAUTH to automatically assign the other number, you may specify an
asterisk ("*") for the number which is to be assigned by TSAUTH and a numeric
value for the number you wish to specify.

/PASSWORD=string specifies the password for the account. The password string
may be up to 7 characters long. If the /PASSWORD qualifier is omitted, no
password will be required for the account to log on. If the /PASSWORD
qualifier is specified without an equal sign or string, TSAUTH prompts for the
password and accepts it without echoing it to the terminal. This is useful it
you want to prevent the password from being printed on a hardcopy terminal
listing.

-12-

Account Authorization

/START=file specifies the logon start-up file specification. The file

specification may be up to 15 characters long. If the /START qualifier is
omitted, no start—up command file will be executed when the account logs on.

/PRIORITY=value specifies the maximum authorized execution priority. If
specified, the value must be in the range 1 to 127. If this qualifier is not
specified, the maximum priority for the job will be set to 50.

/PRIVILEGE=privilege-list specifies the privileges which the job is to have.
If the privilege list consists of more than one keyword, the keywords must be
enclosed in parentheses and separated by commas. The parentheses may be
omitted if a single privilege keyword is specified. The special privilege
keywords ALL, NONE, and STANDARD may be used. The standard privileges are:
ALLOCATE, DEBUG, DETACH, SPFUN, SEND, SETNAME, NFSREAD, NFSWRITE, SAME,
SUBPROCESS, MESSAGE, RLOCK. Initially the privileges are set to STANDARD. The
privileges specified in the privilege list modify the standard privileges. For
example, the specification /PRIVILEGE=(NOSUBPROCESS,SYSPRV) authorizes the
account with the standard privileges but without the SUBPROCESS privilege and
with the SYSPRV privilege. The specification
PRIVILEGE=(NONE,SPFUN,NFSREAD,NFSWRITE) cancels all of the standard privileges
and grants only SPFUN, NFSREAD, and NFSWRITE. If the /PRIVILEGE qualifier is
onitted, the standard privileges are assigned to the account.

Example:

The following account authorizes an account with user name "SALES"; project-
programmer 20,34; password "ENGLAND"; maximum execution priority 60; standard
privileges plus SYSGBL; start-up command file "DLO:STD.TSX":

AUTHORIZE SALES/PPN=20,34/PASSWORD=ENGLAND/PRIORITY=60-
/PRIVILEGE=SYSGBL/START=DLO: STD.TSX

The following command authorizes an account with the user name "ACCT-MANAGER",
password "SECRET", standard privileges plus SYSPRV, and a start—up command file
named "DLO:MSTR.TSX". The default maximum execution priority (50) is used and
TSAUTH automatically assigns a project—programmer number.

AUTHORIZE ACCT-MANAGER/PASSWORD=SECRET/PRIV=SYSPRV-
/START=DLO:MSTR.TSX

If the AUTHORIZE command is used without specifying any qualifiers, TSAUTH will
prompt for each qualifier. When operating in this mode, if you press return
without entering anything in response to the PPN (project programmer number)
prompt, TSAUTH automatically generates and assigns a project programmer number.

For example, the following operation authorizes an account named "OPERATOR";

project—-programmer number 1,1; password "OP4376"; start—-up command file
"DLO:OPR.TSX"; and operator privilege.

-13-

Account Authorization

AUTHORIZE OPERATOR

PPN:1,1

Password:0P4376 [this is not echoed]
Start-up file:DLO:OPR.TSX

Maximum execution priority:
Privileges:0PER, TERMINAL,WORLD

2.4 Modifying an account

The form of the command used to modify parameters for an account is:

MODIFY {username | project,programmer}/qualifiers...

Either a user name or a project programmer number may be specified with the
MODIFY command. If a project programmer number is specified, a wildcard
character ("*") may be specified for either or both of the numbers causing the
modification to be applied to multiple accounts. For example, the following
command grants SUBPROCESS privilege to all accounts with project number 43:

MODIFY 43,*/PRIV=SUBPROCESS

The qualifiers which may be used with the MODIFY command are: /PASSWORD,
/PRIVILEGE, /PRIORITY, and /START. These qualifiers have the same form as
specified with the AUTHORIZE command. The /PRIVILEGE qualifier adds or removes
privileges relative to the privileges the account has at the time that the
MODIFY command is executed, rather than adding or removing privileges from the
standard set as is the case with the AUTHORIZE command. An account must be
reauthorized to change either the user name or the project programmer number.
The user of the account that is being modified, if logged on, must log off and
back on before the modifications will take effect.

For example, the following command modifies the account with the user name
MANAGER to add BYPASS privilege and change the password to SPIRIT:

MODIFY MANAGER/PRIV=BYPASS/PASSWORD=SPIRIT
As with the AUTHORIZE command, if the /PASSWORD qualifier is specified without
an equal sign and string, TSAUTH will prompt for the password and accept it

without echo.

2.5 Deauthorizing an account

The KILL command is used to deauthorize an account. The form of this command
is:

KILL {username | project,programmer}

Either a user name or a project programmer number may be specified. A wildcard
character ("*") may be substituted for either the project number, the pro-
grammer number, or both.

~14-

Account Authorization

For example, the following command deauthorizes the account with the user name
JORES:

KILL JONES
The following command deauthorizes all accounts with project number of 120:
KILL 120,*

2.6 Listing information about accounts

The LIST command is used to list information about accounts. The form of this
command is:

LIST {username | project,programmer}

Either a user name or a project programmer number may be specified. A wildcard
character ("*") may be substituted for either the project number, the pro-
grammer number, or both.

For example, the following command lists information about the account with
user name OPERATOR:

LIST OPERATOR

The following command lists information about all accounts with project number
1:

LIST 1,*

2.7 Listing account usage statistics

The USAGE command is used to list the account usage statistics which consist of
the number of sessions, the connect time, and the CPU time. The form of this
command is:

USAGE {username | project,programmer }

Either a user name or a project programmer number may be specified. A wildcard
character ("*") may be substituted for either the project number, the pro-
grammer number, or both.

2.8 Creating a charge information file

The CHARGE command causes TSAUTH to create a file of usage information. The
file is named "DK:CHARGE.TSX"; it contains one record for each account; each
record is terminated with a carriage return and line feed.

-15-

Account Authorization

The format of a charge record is as follows:

Columns Contents

1 (blank)

2 - 6 Project number
7 (blank)

8 - 12 Programmer number
13 (blank)

14 - 18 Number of logons
19 (blank)

20 - 24 Number of minutes of connect time
25 (blank)
26 - 33 CPU time used (0.1 second units)
34 (blank)
35 - 46 User—name (left justified and padded with blanks)

47 (carriage return)
48 (line feed)

2.9 Resetting account usage statistics

The RESET command resets the account usage statistics (number of sessions,
connect time, and CPU time) to zero for all or a selected set of accounts. The

form of the command is:

RESET {username | project,programmer}

Either a user name or a project programmer number may be specified. A wildcard
character ("*") may be substituted for either the project number, the pro-

grammer number, or both.

2.10 Exiting from the TSAUTH program

The EXIT command (or control-C) is used to exit from the TSAUTH program. The
form of the EXIT command is:

EXIT

2.11 Use gf_indirect files within commands

A portion of a command line may be drawn from an external file by typing @file
at the position in the command where the contents of the file are to be

inserted into the command line. The default extension for these files is TSX.
For example, the following command uses parameters in a file named STUDNT as

part of an AUTHORIZE command:

AUTHORIZE JONES @STUDNT

-1 6_

Account Authorization

The following command draws the privilege list from a file named CLERK and in
addition negates the SUBPROCESS privilege:

AUTHORIZE FRANK/PRIV=(@CLERK,NOSUBPROCESS)

More than one indirect file reference may occur within a command but the
indirect files may not be nested.

-17-

18

3. SYSTEM AND FILE ACCESS SECURITY

TSX-Plus provides a number of security options that allow the site manager to
control system resources to time-sharing users. The system manager can control
who may log onto the system, which files or devices each user may access and
can also lock users to particular programs. The following facilities can be
used to control system access:

1. System password.
2. Start—up command files.
3. Log—off command files.

4. The RUN/LOCK switch.

5. The LOGON program with log-on command files.
6. The ACCESS command.

7. The SET MAXPRIORITY command.

8. Installed programs.

3.1 System password feature

A "system password” facility is available to provide additional security on
dial-up lines in addition to the LOGON program. System password checking can
be enabled on a line-by-line basis. If system password checking is enable for
a line, the user is prompted with an exclamation point ("!") when the line is
initiated (i.e., when carriage return is pressed). After the correct password
is entered, the normal logon sequence begins which prints the system greeting
message and runs the start-up command file (which typically runs the LOGON
program). The idea is to force the user to provide a password before dis-
playing the logon greeting which identifies the site and the nature of the
system.

To enable system password checking, specify the system password using the SYSPS
macro in TSGEN, and include the $SYSPS flag with the FLAGS macro within the
line definition blocks for all 1lines that are to perform system password
checking. The system password may be up to 20 characters long and may contain
spaces. The same system password is used for all lines that perform password
checking.

When a line that performs system password checking is initialized, the system
does autobaud speed selection (if required) and then prints an exclamation
point as the prompt for the system password. The password is not echoed as it
is entered. Terminate the password by pressing carriage return. If the
password is correctly entered, the system will print the standard TSX-Plus
greeting message and perform the normal line initiation sequence. If an
incorrect password is entered, no error message is printed but the exclamation
point is redisplayed. If the password is entered incorrectly a second time,

-1 9_

System and File Security

the line is hung up. The password must be entered within the time limit
specified by the OFFTIM sysgen parameter or the system will hang up.

A keyboard command of the form:

SET SYSPASSWORD password
can be used to change the password for the running system. SYSPRV privilege is
required to use this command; the change only remains in effect until the
system is rebooted. The TSXMOD program can be used to change the system
password in the TSX.SAV file.
The system password can be displayed by use of the following command:

SHOW SYSPASSWORD

SYSPRV privilege is required to use this command.

System password checking may be enabled or disabled for individual lines by use
of the following command:

SET TERMINAL n [NO]SYSPASSWORD
where n is the terminal line number. TERMINAL privilege is required to issue

this command. The TSXMOD program can also be used to set or reset this flag
for lines.

3.2 Start-up command files

In the system generation, a unique start-up command file which executes each
time the 1line is initialized may be specified for each of the physical
time-sharing lines. The command file name is defined using the CMDFIL macro
within a line definition block in TSGEN. (See the TSX-Plus Installation Guide
for information on the CMDFIL macro.) Different command file names may be
specified for each line and any or all lines may be generated without these
start—up command files.

When a line has an associated start-up command file, the command file is
executed each time the line is initialized (e.g., when the user presses
carriage return on an inactive line). Start-up command files are unique from
other command files in that their execution cannot be aborted by typing
control-C. This allows the system manager to place any desired commands in the
start—-up command file to be executed to completion regardless of the actions of
a time-sharing user. However, if for some reason the command file abnormally
terminates, the line may be granted full access to the system without proper
initialization. This can be avoided by disabling command file aborts, except
in the most serious circumstances, by setting the error abort level as the
first command. This is expecially important for lines started with complex
command files and for dial-up lines. For example:

-20-

System and File Security

SET ERROR NONE

R/LOCK LOGON
OFF

This would prevent the line from accessing the system even if the LOGON program
was not found.

A start-up command file may contain any keyboard command and can run one or
more programs. Control-C resumes its normal function when the start-up command
file is terminated or a program started by it requests input from the terminal.
It is suggested that start-up command files be given the extension "TSX" to
prevent their being tampered with by users who do not have system operator
(SYSPRV) privilege or bypass access (BYPASS) restrictions (see below). If
"TSX" is used as the file extension, it must be specified with the file name in
the CMDFIL macro since the default extension is "COM". The default device is
"SY:".

The listing of a start—-up command file can be suppressed by placing the two
character sequence "“(" at the front of the command file. See the chapter on
Command Files in the TSX-Plus Reference Manual for more information on command
file control characters.

Subprocesses (previously called virtual lines) are started by typing control-W
followed by a digit which selects the subprocess. When a subprocess is
initiated, it "inherits"” a large part of the process context from the primary
process but does not ordinarily execute any start-up command file. If you wish
to have a start-up command file executed when a subprocess is started, place a
command of the following form in the start-up command file for the primary
process:

SET SUBPROCESS/FILE=file

where file is the file specification for the start-up command file that is to
be executed when any subprocesses are initiated by the primary process. For
example, the following command specifies that a file named "SY:VSTART.TSX" is
to be executed each time a subprocess 1is started:

SET SUBPROCESS/FILE=SY:VSTART.TSX

The SET SUBPROCESS/FILE command is valid only within a start-up command file.

-21-

System and File Security

3.3 Log-off command files

It is possible to define a command file that is to be executed when a job logs
off. To declare a log-off command file, place a command of the following form
in the start-up command file for the job:

SET LOGOFF/FILE=name

where "name” is the file specification for the log-off command file. The SET
LOGOFF command is valid only within the start-up command file for the job. The
log-off command file is executed whenever the job logs off. Be careful with
what you put in a log-off command file since the execution of a log-off command
file cannot be aborted by typing control-C. The listing of a log-off command
- file can be suppressed by placing "“(" as the first two characters of the file.

3.4 The RUN/LOCK switch

The "R" and "RUN" commands accept a "/LOCK" switch that causes the program
being run to be "locked” to the time-sharing line. A locked program executes
in the normal fashion, and may chain to other programs (which are also locked).
However, if a locked program exits or is aborted by typing control-C the line
is automatically logged off. Note that one can prevent an ongoing program from
being aborted by control-C by doing a .SCCA EMT or by defining control-C as and
activation character using the TSX-Plus program controlled terminal options
(see the TSX-Plus Reference Manual chapter on Terminal Control for information
on defining activation characters).

In a situation in which a time-sharing line is to be automatically locked to a
program when the line is started, simply build a start—up command file for the
line and include as the last start-up entry in the file a "RUN/LOCK program”
command.

3.5 Use of the LOGON facility

The TSX-Plus LOGON facility provides access security to the system by requiring
users to enter a valid project-programmer number or user name and password
before granting access to the system. 1In addition, the LOGON facility allows
the system to grant different privileges to each user and provides system use
accounting on a per user basis.

To use the LOGON facility the system manager must first use the account
authorization program (see the chapter titled Account Authorization Program) to
create an account authorization file. This file specifies the valid project-
programmer numbers, user names, passwords, user start-up command file, and
privileges. He must then generate a TSX-Plus system and specify a line-by-line
start—up command file to be executed for each line that is to be forced to
logon. The suggested name for this start-up command file is "SY:LOGON.TSX".
This command file may contain any desired keyboard commands but should start by
disabling error aborts, should lock the job to the LOGON program, and should
end by logging the job off. 1In this fashion, the job will not be able to gain

=22~

System and File Security

access to the system even if the LOGON program is missing or some other command
fails. For example:

SET ERROR NONE

R/LOCK LOGON
OFF

This command causes the LOGON program to be started and "locked” to the line so
that the user cannot run any other program until the logon has been success-—
fully completed. Note that the logon program (LOGON.SAV) must be present on
the system device. The OFF command will only be executed if the LOGON program
cannot be run.

Note that for each job there may be two start-up command files: the first is
specified with the CMDFIL macro in TSGEN and is associated with a physical
time-sharing line; the second is associated with a particular user (account
name, project—-programmer number) and is invoked through the LOGON program and
account authorization system.

To prevent listing the start-up command file, the character sequence "~ (" may
be placed at the beginning of the command file. Thus, the logon start—up file
for a physical time-sharing line might contain:

~(SET ERROR NONE
R/LOCK LOGON
OFF

A SET LOGOFF command can be placed in the start-up command file to declare the
name of a command file to be executed when the job logs off.

3.6 The ACCESS command

The ACCESS keyboard command is used to limit access to devices and files. The
ACCESS command is valid only if executed as part of a start—up command file.

The form of the ACCESS command is:
ACCESS dev:file.ext/switch,dev:file.ext/switch,...

Up to twenty-five "dev:file.ext" expressions may be specified. Each logical
subset disk mounted also counts toward the limit of entries in the access
table.

If no ACCESS command is executed, the time-sharing user is allowed to access
all devices and files on the system (with the exception of SYS and TSX
extensions - see SYSPRV and BYPASS privileges). If an ACCESS command is
executed, the user is restricted to accessing only the devices and files that
are specified with the command.

-23-

System and File Security

The "dev:file.ext" expression has three items: the device name, the file name
and the extension. The "*#" (wildcard) character may be substituted for any or
all of these three items. In this case the wildcard will allow access to any
name that occurs in the wildcarded position. For example, "RK1:*.ABC" will
allow access to any file on RK1l that has the extension "ABC". Consider the
following ACCESS command:

ACCESS RKO:*.ABC,RKO:*.BAK,RK1:% % LP:

This allows access to any files on RKO that have the extension "ABC" or "BAK";
it also allows access to all files on RKl and LP. Note that the LP specifi-
cation is needed if the user is to be allowed to access the line printer.
Access privilege is needed to read, create, delete, or rename a file. A device
can only be initialized (directory cleared) if full access to the device and
non-file-structured write privilege (NFSWRITE) are granted.

The ACCESS facility works by matching the user-specified device, file and
extension names with those that were specified on the ACCESS command. This
matching is done after any ASSIGNS of logical to physical device names are
carried out.

Since the utility programs PIP, DUP and DIR directly access device directories,
they exhibit minor deviations from expected access protection behavior. If
access 1is granted to any files on a device and non-file-structured read
privilege (NFSREAD) is granted, then DIR will be able to obtain the device
directory. In order for PIP and DUP to access an individual file, the job must
have at least /READ access to the full device and non-file-structured read
privilege (NFSREAD), even if access has been granted to the specific file of
interest. These deviations affect the DIR, COPY, TYPE, and PRINT commands
among others.

The "/READ" switch may be specified with a device-file name to restrict access
to the device-file to be read-only. For example, the following command allows

full access to RK1 but read-only access to RKO.
ACCESS RK1:,RKO:/READ

Remember that the common utility programs, such as PIP and DIR, are required by
most users and consequently at least SY:*.SAV/READ access is usually desirable.
Also, access to system library files (SY:SYSLIB.OBJ, SY:FORLIB.OBJ) and the
system MACRO 1library file (SY:SYSMAC.SML) may be necessary for progran
development. Because of the limited number of ACCESS entries that may be made
(25 for each job), it is not advisable to enumerate each specific file to which
access is desired, but rather to cluster groups of files on the system disk or
on logical subset disks. For example, the following ACCESS command could be
used to grant full access to DLl and limited access to the system disk:

ACCESS DL1:,SY:*.SAV/READ,SY:SYSLIB.OBJ/READ,SY: SYSMAC.SML/READ

-2

System and File Security

The ACCESS and MOUNT commands can be used together to control access to logical
subset disks. To control which logical disks are available to a user, specify
the names of the files that contain the logical disks with the ACCESS command
in the startup command file and then use MOUNT commands after the ACCESS

command to- associate logical disk units with the files. This will allow the
user to access all files within the logical disk but will restrict access to
other logical disks or files. For example, consider the following commands
which could be placed in a startup command file:

ACCESS SY:/READ,DLO:CLASS1.DSK,DLO:CLASS2.DSK/READ

MOUNT LDl DLO:CLASS1
MOUNT LD2 DLO:CLASS2

After executing this startup command file, the user will have read only access
to all files on the system disk ("SY:"), read-write access to LD1 which is
associated with the file DLO:CLASS1.DSK, and read-only access to LD2 which is
associated with DLO:CLASS2.DSK. This will permit the user to initialize LDl
and create, edit, and delete files on LDl. The user may also create nested
logical disks within LD1. Files on LD2 may be accessed for reading only.

3.7 The SET MAXPRIORITY command

TSX-Plus users can assign execution priority values to their jobs by use of the
SET PRIORITY command and a TSX-Plus EMT. The maximum priority that a user is
allowed can be controlled by use of either the TSAUTH program (in conjunction
with the LOGON program), or the SET MAXPRIORITY command. Normally the TSAUTH
program would be used to assigned maximum priorities if the LOGON facility is
being used. The SET MAXPRIORITY command is intended primarily in situations
where the LOGON facility is not being used but it is still desirable to limit
the maximum authorized priority. In these cases the SET MAXPRIORITY command
can be placed in the start—up command file for the line.

The form of the SET MAXPRIORITY command is:

SET MAXPRIORITY value
where "value"” is in the range O to 127. The SET MAXPRIORITY command may only
lower the maximum authorized priority value for the job, it may not increase

it. Thus the system manager may restrict job priority by placing a SET
MAXPRIORITY command in the start—up command file for a line.

3.8 INSTALL command

Programs may be "installed” in the system to allow special attributes and
privileges to be invoked when the program is run. The form of the INSTALL
command used to add a program to the install table is:

INSTALL ADD program|[/attribute...][/PRIV=(privileges)]

-25-

System and File Security

Where program is the file specification for the program being installed,
attribute is one or more of the attributes listed below, and privileges is a
Iist of privilege keywords which specifies which privileges are to be temporar-
ily granted or denied while the program is executing. If a program is already
in the install table, the new specifications replace the existing ones.

The device name specified for the program (or DK by default) is translated to a
physical device name at the time the INSTALL command is executed. Similarly
the physical device name for a program being started is used when the install
table is searched at program start-up time. Installed programs must reside on
physical disks, and may not be located on logical disks.

The INSTALL command does not open the SAV file of the program being installed
and no error will occur if installed programs are not actually present on the
system.

The following programs are automatically installed when TSX-Plus is started:
IND, KED, KEX, K52, LOGON, PATCH, SETUP, SYSMON, TECO, TRANSF, TSAUTH, VTCOM.
These programs should be located on the disk from which the system was booted.
Because of the installation of SYSMON, it is no longer required to have system
privilege to execute SYSMON. The INSTALL command can be used to alter the
standard installed programs.

One entry is reserved in the install table for each of the programs that is
automatically installed by TSX-Plus plus the number of entries specified by the
NUIP sysgen parameter.

The form of the INSTALL command used to remove a program from the install table
is:

INSTALL DELETE program

where program is the file specification for the program whose entry is to be
removed.

The SHOW INSTALL keyboard command may be used to list information about all
installed programs.

SYSPRV privilege is required to use the INSTALL ADD/DELETE command or the SHOW
INSTALL command.

The following attributes may be specified for installed programs:

Attribute Meaning

BYPASN (Bypass logical assignments)
Bypass all logical device assignments. DK and SY will be
directed to the system disk (disk from which RT-11 was
booted).

-2 6_

e

s

System and File Security

HIGH (High-efficiency mode)
High-efficiency terminal mode is selected.

IOPAGE (I/0 page access)
I/0 page is mapped into PAR 7 of program virtual address
space.

LOCK (Lock program to job)

Program is "locked" to job so that job is logged off if
program exits.

MEMLOCK (Lock program in memory)
Program is locked in low memory while it is running.

NONINTERACTIVE (non-interactive execution)
Program is run with non-interactive execution priority.

NOWAIT (Non-wait terminal I/0)
Program is allowed to execute non-wait .TTYIN and .TTOUTR
operations (bit 6 must also be set in the job status word to
enable non-wait terminal I/0).

SINGLECHAR (single-character activation)
Program is enabled to perform single-character activation (bit
12 must also be set in the job status word).

TRANSPARENT (transparent terminal output)
Terminal output is processed in "transparent” mode where
control characters such as the TSX-Plus "leadin" character are
not interpreted by the system.

Attributes and privileges specified for installed programs take effect when the
program is started (either by use of a R or RUN command or by chaining to the
program) and remain in effect until the program exits or chains to another
program at which time the program attributes are cleared and the current
privileges are reset to the set privileges.

The /PRIVILEGE qualifier may be used to temporarily grant or deny any privilege
including privileges for which the job is not authorized. For example, the
following INSTALL command installs a program named CONTRL on DL1 which is to
have PAR 7 mapped to the I/0 page while the program is running. MEMMAP
privilege is granted while the program is running but DEBUG privilege is denied
to prevent a user from triggering a breakpoint while the program is running
with access to the I/0 page:

INSTALL ADD DL1:CONTRL/IOPAGE/PRIV=(MEMMAP,NODEBUG)
Note in this example, MEMMAP privilege is required to run this program since

the /IOPAGE attribute was specified. If the MEMMAP privilege had not been
specified when the program was installed, only those users who are authorized

=27~

System and File Security

for MEMMAP privilege would be able to run this program. By installing the

program with MEMMAP privilege, users who are not authorized for MEMMAP
privilege are temporarily granted the privilege to enable them to run the
program.

-28-

ane”

4. DEVICE HANDLERS

TSX-Plus supports the following RT-11 device handlers: CT, CR, DD, DL, DM, DP,
ps, DT, DU, DX, DY, LP, LS, MM, MS, MT, NL, PC, RF, and RK. In addition, the
IEEE GPIB version 2.1 IB device driver is supported. The logical subset disk
(LD) and single line editor (SL) are implemented in TSX-Plus as overlay regions
and do not require device handlers. The virtual memory handler (VM.TSX) is
proprietary and unique to TSX-Plus. TSX-Plus also supports the communication
line (CL) device handler.

The following RT-11 device handlers are unsupported under TSX-Plus: BA
(resident batch handler), EL (error logging pseudohandler), and PD
(PDT-11/130/150 handler). Also the IBSRQ function of the GPIB IEEE IB handler
is unsupported. In addition, TSX-Plus supports the functionality (but not the
RT-11 device handler implementation) for logical subset disks (LD), the single
line editor (SL), and the virtual memory device (VM).

4.1 Device handler extensions and restrictions

TSX-Plus requires device handlers which are written to support a memory
management RT-11 XM enviromment. Error logging is not supported under
TSX-Plus. See the RT-11 Software Support Manual for details on device
handlers. Device handlers must follow the rules for RT-11 XM device handlers
in order to function with TSX-Plus.

4.1.1 RT-11 version number checking

TSX-Plus will not install device handlers which were issued by Digital
subsequent to the version of RT-11 under which TSX-Plus is being started. 1In
other words, you must upgrade to the appropriate version of RT-11 in order to
be able to use the newer device handlers with TSX-Plus. Specifically, the
following device handlers minimally require the indicated version of RT-11:

Device RT-11 version

DU 5.00
XL 5.01

In addition to the RT-11 version checking, TSX-Plus determines if the device is
present before installing the handler. This requires the following: 1) the
address of the device CSR register, as specified in location 176 of the device
handler file, be found; and 2) the installation code starting at location 200
in block O of the device handler file, if present, executes and returns with

the carry-bit clear.

4.1.2 1/0 queue element extension

TSX-Plus requires and stores more information concerning each I/0 request than
does RT-11. To accomplish this, TSX-Plus uses an I/0 queue entry which is 17
decimal words long. Each element in the I/0 queue has the following format:

-29-

Device Handlers

Name Offset Length Description

Q.LINK 0 2 Link to next queue entry

Q.CSw 2 2 Address of CSW for channel making request
Q.BLKN 4 2 Physical block number of request

Q.FUNC 6 1 Special function code

Q.UNIT 7 1 Device unit number (bits O through 2)

Q,JNUM 7 1 Job number issuing request (bits 3 through 7)
Q.BUFF 10 2 User buffer address relative to Q.PAR

Q.WCNT 12 2 Word count (+ =Read, 0 =Seek, - =Write)
Q.CcompP 14 2 Address of completion routine for request
Q.PAR 16 2 PAR relocation bias for buffer address

Q.PA5 20 2 Mapping value for kernel PAR 5

Q.UMRX 22 2 Address of UMR block assigned for I/0

Q.CHAN 24 2 User channel # associated with I/0 request
Q.DEVX 26 1 Device index number

Q.FLAG 27 1 Device control flags

Q.JOB 30 1 Number of job that is making request

Q.UMVB 31 1 Unibus UMR base register number

Q.UMPB 32 2 Original value of Q.BUFF when I/0 was initiated
Q.UMPP 34 2 Original value of Q.PAR when I/O was initiated
Q.PA6 36 2 Mapping value for kernel PAR 6

Q.UCSwW 40 2 Virtual address of user”s channel block
Q.ICSW 42 12 Copy of user”s channel block

TSX-Plus stores the number of the job issuing an I/0 request in the Q.JOB byte
of the queue element. Normally RT-11 only uses bit positions 11 through 15
(Q.JNUM) of the fourth word of the queue element. For compatibility, TSX~Plus
also stores the job number in these bits, however, for jobs numbers greater
than 32 (requiring more than 5 bits for representation), all job bits in this
fourth word are set. A job number of zero implies the I/0 request was
initiated from the operating system.

4.1.3 Device handlers use of PARs

Any handler that accesses the user”s buffer directly by remapping kernel page
‘address register (PAR) 1 must be altered to use kernel PAR 6. Addresses in the
I/0 queue entries are automatically adjusted to pass virtual addresses within
the PAR 6 region (140000 to 157777). 1In addition, boundary checking must be
altered to correspond to this virtual address region. Any handler using PAR 6

must first issue a .INTEN request.

Kernel page address register 5 is also available for use in device handlers
which are not loaded as mapped handlers. If PAR 5 or PAR 6 is used within a
handler in an interrupt service routine (after doing an .INTEN) they do not
have to be saved since the .INTEN will do this; however, if they are used in a
handler other than at interrupt or fork level (e.g., on I/O initiation) they
must be saved and restored by the handler.

-30-

AN

e

Device Handlers

4.1.4 Extension for the LSI-11 bus

On the LSI-11 bus, only the DL, DM (with DILOG DQ215 and Emulex SCO2C control-
lers), DU, and MS handlers are actually supported with full 22-bit DMA
capability, and these devices must have controllers which also support 22-bit
addressing and the controllers must be so configured in order to achieve actual
22-bit capability. In order to use any DMA device from a program located above
256K bytes in physical memory, the device and handler must be capable of and
coniigured for 22-bit addressing or the device must be declared to use system
I/0 mapping in its TSGEN device definition. See the description of the DEVDEF
macro (in the TSX-Plus Installation Guide) for more information on 22-bit
addressing and system I/0 mapping. If a DMA device or handler does not support
or is not configured for 22-bit addressing and does not use system mapping,
then attempts to use it will generally result in "Illegal or uninitialized
directory” or "Device I/0 error” error messages. Serial devices (such as LP,
LS, and DX) which do not use direct memory access do not require 22-bit

handlers or controllers or System 1/0 mapping.

4.2 Device handler programmed requests

TSX~-Plus supports the standard code expansion for device handler programmed
requests implemented in the RT-11 system macro library (SYSMAC.SML) which
include .CTIMIO, .DRAST, .DRBEG, .DRBOT, .DRDEF, .DREND, .DRFIN, .DRSET,
.DRVTB, .FORK, .INTEN, .MFPS, .MTPS, .SYNCH, and .TIMIO. See the RT-11 System
Support Manual for details concerning the usage of these programmed requests.
In some cases (as described below), TSX-Plus provides various extensions to
these programmed requests.

4.2.1 .FORK requests
In order to understand the processing of fork requests by TSX-Plus, it is
helpful to review the concept of interrupt priorities. The PDP-11 family of

computers has 8 interrupt priority levels, numbered O through 7. The priority

of an interrupt is selected by the device requesting the interrupt. The
processor (CPU) remembers the current interrupt priority in the processor
status word. An interrupt request is held in a pending state and is not

allowed to interrupt the processor if the current interrupt priority is equal
to or greater than the pending interrupt priority. Priority level 0 is the
priority at which the processor runs when no interrupt is being serviced.

Fork processing under TSX-Plus implements a software based interrupt system
which effectively operates at an interrupt priority level greater than hardware
priority O and less than hardware priority 1. Like the hardware interrupt
system, TSX-Plus fork requests have priority values that are specified by the
software component that is making the fork request. Also like the hardware
interrupt system a fork request may interrupt a currently executing fork
request of lower priority but may not interrupt a currently executing fork
request of equal or greater priority. The fork priority values range from 1 to
127 (decimal); the higher the numerical value, the higher the priority.

-31-

Device Handlers

Conceptually, fork priorities correspond to interrupt priorities in the range
0.001 through 0.127. Thus, any hardware interrupt request (which has a
priority in the range 1 through 7) can interrupt any fork request. Fork
requests are queued in order by priority value. If two or more requests have
the same priority value, they are queued in the order in which the requests
were made.

The standard instructions generated by a .FORK request are:

JSR R5,@SFKPTR
.WORD fkblk-.

Where S$FKPTR is a cell containing the address of the system fork routine and
fkblk is the address of a four word fork block. Although TSX-Plus does not
actually use the four word fork block specified by the request, it does consult
the device handler”s fork block when necessary to determine the status of the

fork entry.

The standard fork call works under both RT-11 and TSX-Plus. When this form of
fork call is wused under TSX-Plus, the fork request is queued with a fork
priority of 50 (decimal).

An alternative fork request call may be used under TSX-Plus to specify a
priority for the fork. The form of this call is:

JSR RS, @$FKPTR
.WORD 100000+priority

Where "priority" is a fork priority value in the range 1 to 127. The constant
100000 must be added to the priority value to produce a value which TSX-Plus
can recognize as a priority rather than the standard RT-11 format above which
points to the offset of a user fork block. The assumption is that a handler
fork block is highly unlikely to occur at an offset greater than 100000 from

its fork request.

The current TSX-Plus fork priority values are defined in the intial part of
TSGEN as follows:

-32-

g

N

Device Handlers

Symbol Value Description

FPSMAX 127. Maximum legal fork priority

FPSRT 100. Real-time interrupts

FPSCKT 70. 50/60 Hz clock interrupt processing
FPSCDI 60. Terminal character input processing
FP$CDO 55. Terminal character output processing
FPSDEF 50. Default fork priority ’
FPSIOF 50. I/0 complete

FPSIOA 50. 1/0 abort entry

FPSPIO 50. PI output interrupt processing
FPSCK1 30. 0.1 second clock processing

FPSIOS 12. I/0 initiation

FPSMOV 10. Move data to/from cache buffer

Special care must be used to prevent contentions when coding internally queued
handlers which must manipulate the handler”s queue link pointers (CQE and LQE).

4.2.2 .SYNCH and completion requests

TSX-Plus groups completion requests into three categories. Normal completion
requests (such as I/0 completion, .MRKT, etc.) are assigned the lowest class
number one. Completion routines scheduled as a result of real-time interrupt
are assigned class number two. Completion routines resulting from a device
handler which issues a .SYNCH request are of class number three. A completion
request of a higher class may interrupt a currently executing completion
routine of a lower class. Thus, a .MRKT completion routine can be interrupted
by a real-time completion routine which can be interrupted by a .SYNCH
completion routine. Completion routines cannot be interrupted by completion
routines of the same or lower class but are queued serially by class number.

4.2.3 .TIMIO and .CTIMIO requests

Under TSX-Plus it is not necessary for a handler to go to fork level before
issuing .TIMIO and .CTIMIO requests. If a job number is placed in the timer
control block used with a .TIMIO request, the handler will be synchronized with
the specified job number when the timeout routine is entered. If a zero job
number is specified in the timer control block, the handler timeout routine
will be running at fork level but not synchronized with any job if an I/0
timeout occurs. See the RT-11 Software Support Manual for more information on
the .TIMIO and .CTIMIO programmed requests.

4.3 Generating device handlers for use under TSX-Plus

TSX-Plus generally uses standard RT-11 XM device handlers, however, some
handlers supplied with RT-11 require minor modifications to function correctly
with TSX-Plus. The necessary handler modifications have already been applied
and are included in the dd.TSX handlers supplied with TSX-Plus.

If you ordinarily need to make no modifications to the handlers supplied by
Digital on your system, then you may use the handlers provided with the
TSX-Plus distribution. Most common changes can be accommodated through device
SET options. However, if you need to change the handlers supplied with RT-11,

-33-

Device Handlers

you may need to apply some patches before using them. See the TSX-Plus
Installation Guide for information concerning patching device handlers for use
with TSX-Plus.

4.3.1 Building device handlers

When building device handlers, it is necessary to set certain switches before
assembly which control conditional code exclusion and inclusion. TSX-Plus
requires memory management and optionally allows device timeout. However, it
does not support error logging, therefore, error logging should be excluded

when the handlers are built.

The conditional file used to build the device handlers supplied on the TSX-Plus
distribution media is named TSXCND.MAC (also present on the distribution
media). It contains the following conditionals:

TSXS$P 1 3;TSX-Plus support

BF =1 ;sNo SJ support

MMGST =1 ;Memory management support
TIMSIT =1 ;Device time out

ERLSG =0 ;No Error log support

DXTS$O0 =0 sNo Second RX1l controller support
DX$CSR = 177170 ;Status register for first RX11
DXSVEC = 264 sVector for first RX1l1

DYSDD =0 ;No RX02 double density only
DYTS$O =0 ;sNo Second RX02 controller
DY$CSR = 177170 ;Status register for first RX02
DYSVEC = 264 ;Vector for first RXO02

DDTSO =0 ;No Second DECtape II controller
DDSCSR = 176500 ;Status register for first DECtape II
DDSVEC = 300 ;Vector for first DECtape II
SRFNUM = 1. ;Number of RF1l platters

RJS0$3 =1 ;RIS disk is RJSO3

DLSUN = 4. sNumber of RLO1/RLO2 units
DUSPOR =1 ;Number of MSCP ports

RP0S3 =1 sRP11 disk is RPO3

MT$FSM =1 3TM11 file-structured support
MTSUN = 2. ;Number of TM1l units

MMSF SM 1 ;TJU16 file-structured support
MMSUN = 2. ;Number of TJUL6 units

MSSFSM =1 3TS11 file structured support
MSSUN = 1. sNumber of TS11 units

MSSCSR = 172522 ;Status register of first TS11
MSSVEC = 224 ;Vector of first TS11

XLS$CSR = 176500 ;XL CSR

XLSVEC = 300 ;XL Vector

LSS$PC =0 sNo LS PC30C support

LSSCSR = 176500 ;Serial LP CSR

LS$VEC =

300 : ;Serial LP CSR

-34-

Device Handlers

Note that setting a conditional parameter to zero (0) disables the option and
setting it to one (1) enables the option. Since device timeout support is
always available with TSX-Plus, but is optionally supported by handlers, TIMS$IT
may be either O or 1. Other parameters may be included to specify device
characteristics. Refer to Appendix C of the RT-11 System Generation Guide for
an entire list, default value, and description of device conditionals. These
parameters are not required and will use a default value if left unspecified,
except TSX$P and MMGST which must both be set to 1 for TSX-Plus.

Before building device handlers, the appropriate patches (provided as .SLP
files on the distribution medium) must be applied. See the TSX-Plus Instal-
lation Guide for information on applying the patch files. The distribution
medium contains the .SLP files for all device handlers which require modifi-
cation for use with TSX-Plus. Most handlers may be built by the following
commands:

MACRO TSXCND+dd/OBJ
LINK/EXE:SY:dd.TSX dd

where "dd" represents the two character device name.

Only the file structured magtape handlers require different commands. They may
be built by using the following commands:

MACRO TSXCND+FSM/0BJ
MACRO TSXCND+td/0OBJ
LINK/EXE:SY:dd.TSX td,FSM

where "td" represents the tape device source module name (TJ, TS, or TM) and
"dd" represents the corresponding magtape device name (MM, MS, or MT). Notice
that the LINK command automatically appends the "TSX" file extension. Since
TSX-Plus uses handlers with the extension "TSX", the handlers must be linked
with that extension rather than with the extension "SYS". This allows the
TSX-Plus handlers to coexist on the same system disk with standard RT-11
handlers without conflict. Handlers for all devices included in your TSGEN
DEVDEF 1list, including the system disk, must be on the system disk when
TSX-Plus is started.

4.3.2 Defining device handler attributes

For each device to be available to the system an entry must be made in TSGEN
using the DEVDEF macro. (Note that CL, LD, TT, and SL have other generation
parameters and must never be included in a DEVDEF declaration.) This entry
requires optional parameters which specify the characteristics of the device
handler. Based on these characteristics, TSX-Plus can determine any special
operating considerations. The standard device drivers distributed with
TSX-Plus have predetermined flag settings known by the TSX-Plus start-—up
program. Therefore, it is not necessary to specify flag options when using the
device handlers distributed with TSX-Plus. In cases where non-standard
handlers are installed, it is necessary to choose the correct device attributes
to insure correct operation.

35

Device Handlers

The nine optional device parameters control the following operation:

DMA

MAPIO

EVNBUF

NOCACHE

NOMOUNT

REQALC

Device performs Direct Memory Access (DMA).

In UNIBUS systems with more than 256 K bytes of memory, TSX-Plus
allocates and controls UMRs (Unibus Mapping Registers) to perform
I/0 requests for a DMA device.

Perform I/0 mapping.

In QBUS systems with more than 256 K bytes of memory, TSX-Plus must
buffer the I/0 request into an 18-bit addressable memory region and
move the information into the user”s area when the users job is
above an 18-bit memory address. Requests are not buffered if the
job is below the 18-bit low memory region (256 K bytes).

Require even byte buffer address for I/0 transfers.

Some device controllers (DMA devices) and device handlers (VM) which
implement a word transfer (rather than byte), require the buffer
address to begin on a even byte address (word aligned). 1In these
cases, odd byte addresses may cause I/0 failure or fatal system
errors which could halt system execution. TSX-Plus will check the
buffer address to insure that the transfer is word aligned. If the
I/0 request does not begin on a word boundary, a user error will be
returned from the EMT request.

Do not use generalized data cache for this device.

For certain devices, it is desirable to disable generalized data
cache. For example, since the VM handler uses memory as a device,
it would be wasteful of machine resources to also allow it to
utilize generalized data cache. This would not only result in
displacement of information contained within the cache but would
also have the additional overhead of a useless memory to memory
transfer.

Do not allow mounts for this device.
If this option is specified, the physical device cannot be mounted
and therefore will not use directory caching.

Require device allocation before use.

If this option is specified, access to the device units is only
allowed to users who have allocated the device by use of the
ALLOCATE command.

-36-

L

MAPH

NOMAPH

HANBUF

Device Handlers

Load the device handler into a mapped handler region.

TSX-Plus will place device handlers within an extended memory
region, reducing the size of the low memory kernel region (re-
stricted to 40 K bytes). Handlers which are placed in extended
memory are known as "mapped” handlers. TSX-Plus communicates with
mapped device handlers by mapping PAR5 to the handler”s extended
memory base address. As device handlers are loaded, the interrupt
entry point is intercepted and directed to a low memory address
which will map to the handler then enter the handler”s interrupt

entry code.
Handlers may be mapped under the following conditions:

1. Since only one PAR register is used to access the device handler
it must not be larger than 8 K bytes.

2. Since handlers are accessed by kernel PAR 5, the handler must
not use kernel PAR 5.

3. Since only two device interrupt vectors per handler are
redirected, the handler may not connect to more than two device
interrupt vectors. In addition, since the redirection is
performed during initialization, the handler may not dynamically
connect to interrupt vectors.

4. When the device handler contains an internal buffer used for DMA
access, it must calculate the correct physical address taking
into account it”s own mapped address. It must also declare the
HANBUF option which will not allow it to be mapped on extended
UNIBUS configuration or when MAPIO is also specified. See the
HANBUF option for more information concerning this restriction.

Always load the handler into the low memory 40k byte region.

Some device handlers are not eligible for mapping into extended
memory regions and TSX-Plus will place them in the low memory kernel
region. The NOMAPI option will take precedence over the MAPH option
if both are specified.

Handler contains an intermnal I/0 buffer used for DMA transfers.

Handlers with internal DMA buffers require special coding to be used
as a mapped device handler. In addition, when TSX-Plus is evalu-
ating the system definitions and device characteristics for loading
device handlers, it will never map a handler which uses an internal
buffer if the handler also requires mapped I/0 transfers in QBUS
systems with more than 256 K bytes of memory (MAPIO) or if the
handler resides in a UNIBUS system with more than 256 K bytes of

memory.

-37-

Device Handlers

The following subroutine illustrates how a handler can translate the
virtual address of an internal I/0 buffer into the correct physical
address. This subroutine will function correctly under TSX-Plus whether

or not the handler is mapped:

;5 Calculate a 22-bit buffer address from the
virtual address of a buffer which is contained
s within the handler.

5 This is necessary if the handler is mapped.

s Input:

; OLDBA - Virtual address of the internal buffer
; EXTADR - Zero

5

; Output:

OLDBA - Low order (l6-bits) of the physical address
EXTADR - High order (6-bits) of the physical address
5 All registers are preserved

b

MAPADR: CMP OLDBA,#120000 ;Handler loaded into a mapped region?
BLO 10$;Br if handler is below mapped region
MOV RO,-(SP) ;Save registers
MOV R1,-(SP) ;
MOV @#172352,R1 ;Get the handler PAR5 relocation value
CLR RO ;Clear high order address cell
ASHC #6,R0 ;Convert to physical memory address
BIC #160000, 0LDBA ;Isolate offset (clear virtual PAR #)
ADD R1,0LDBA ;Add the phys. relocation to low order
ADC RO ;Add carry to high order
ASH #4 ,RO ;Shift high order to bits 4 thru 9
MOV RO,EXTADR ;Store high order address
MOV (SP)+,R1 ;Restore registers
MOV (SP)+,R0 ;

10$: RETURN sReturn

4.4 Debugging a device handler

A special version of the ODT debugging program is provided with TSX-Plus for
use in debugging user written device handlers. In order to perform this type
of debugging the following two files must be available on the system disk when
TSX-Plus is started: TSXDB.SAV and SYSODT.REL.

In order to start TSX-Plus under control of the system debugging program, type
R TSXDB

This is analogous to the R TSX command that is normally used to start TSX-Plus

but has the effect of loading the system debugging program into memory with

TSX-Plus and transferring control to it before TSX-Plus performs its initiali-
zation.

-38-

Device Handlers

The system debugging program requires approximately 2,900 bytes in the 40K byte
low-memory portion of TSX-Plus. If your generated system 1is so large that
there is insufficient space to start it with the debugging program, regenerate
the system with all handlers removed except the ones that are needed for
execution and reduce the number of time-sharing lines.

When you start the system by typing R TSXDB, it responds by printing an
asterisk indicating the debugger is in control and waiting for a command. The
debugger only accepts commands from the machine”s console terminal. The
commands take the same form as for standard ODT except some of the lesser used
commands (such as searching through memory) have been removed to save space.

On entry to the debugger, register Rl ($1) contains the address of an instruc-
tion that is executed each time control-R is typed. If you set a breakpoint at
this location you can trigger a breakpoint whenever you wish, after the system
is started, by typing control-R at any active terminal.

Once the control-R breakpoint is set, start the system by typing ";G". After
the system has started and you have logged in, determine the address of the
base of the handler by use of the SHOW DEVICE keyboard command. The handler
being debugged should be specified as non-mapped (i.e., do not load into
extended memory) when the system is generated. As a result of this, the
"P. base" (physical memory) base address will be zero, and the "V. base”
address will be the actual address of the base of the handler. This is the:
address of the first cell in the handler header (block 1 of the handler) which
contains the device vector address. Note, this address is the base of the
handler not the handler entry point; the entry point is at base address + 12

(octal).

Once the base address of the handler is known, trigger a breakpoint by typing
control-R, set a debugger relocation register at the base of the handler, set
breakpoints within the handler, and proceed by typing ";P".

The following sequence of commands illustrates the process of starting TSX-Plus
with the system debugger. The values shown for addresses within the system
will vary depending on the options included when the system is generated.

.R TSXDB ! Start system with debugger

ODT V04.00 ! Debugger indicates it is in control
f§l£020504 ! Get address of control-R breakpoint
*020504; 1B ! Set a breakpoint at control-R

*;G ! Start the system

In the case where you are debugging a handler which fails before the system is
started (such as the handler for the system device), the procedure for
debugging is somewhat more complex. You still start the system under debugger
control by typing "R TSXDB", but instead of relying on the control-R breakpoint
(which requires that the system get started) set a breakpoint at the location
whose address corresponds to the symbol INIJMP which can be found in the TSEXEC
section of the system LINK map. The instruction at INIJMP is executed after

-39~

Device Handlers

the portion of the system initialization that loads handlers but before the
system handler is used. Once you have set a breakpoint at INIJMP, start
execution by typing ";G".

Once the breakpoint at INIJMP is triggered, you must determine the base address
of the handler by examining system tables. The table PNAME (in the TSGEN
portion of the map) contains a one word entry for each device; the entry is the
RAD50 name of the device. Examine each entry in this table, using the "X"
debugger command to convert the octal value to RAD50, until you locate the
entry for the handler to be debugged. The HANENT table (also in the TSGEN
section of the map) is a table that is parallel to PNAME and contains the
addresses of the handler entry points. Examine the entry in HANENT that has
the same offset as the device name in PNAME. This is the entry point of the
handler. Subtract 12 (octal) to obtain the address of the base of the handler.
Breakpoints can then be set in the handler and execution continued by typing

";P".

4.5 Internally queued device handlers

Handlers that perform internal queuing must take special precautions to avoid
possible contention from prioritized fork request processing. Handler
initialiation code is procesing at fork priority 12 while all other code
(interrupt, abort, timout) is running at fork priority 50. See the previous
section in this chapter discussing fork prioritization. If necessary, a fork
request of priority 50 may be issued from the handler”s initiation section in
order to serialize processing within the device handler. In certain circum—
stances, it may be desirable to alter FPS$IOS (the I/0 initiation priority) in
TSGEN to be 50.

Handlers that perform internal queuing must set the error flag in the Channel
Status Word (CSW) if, for any reason, they abort or fail to complete pending
I/0 requests. This is particularly important when aborting a pending I/0
operation which is requested by the generalized data cache facility.

~40-

P

g’

Device Handlers

5. PROGRAMMING FOR SPECIAL DEVICE HANDLERS

5.1 Special TSX-Plus device handlers

Several device handlers are uniquely integrated into the TSX-Plus environment.
The communication line handler (CL), the logical subset disk handler (LD), the
terminal line handler (TT), and the single line editor (SL) are provided as
integrated system features and do not require device declarations (DEVDEF).
The professional interface handler (PI) is provided with PRO/TSX-Plus and when
used is defined as a shared run-time system and not as a device handler. The
TSX-Plus virtual memory handler (VM) utilizes knowledge of the TSX-Plus
environment to determine the usable memory space available. VM is the only
special TSX-Plus device handler which requires a device declaration (DEVDEF) in
order to be used.

5.1.1 Communication line handler (CL)

The CL handler allows Input/Output operations to be performed to serial
communication lines connected to DL11, DLV11, DZ11l, DZV1ll, DHl1l, and DHV1l
communication controllers. With the CL handler it is possible to have some
lines on a multiplexer used as TSX-Plus time-sharing lines, and other lines on
the same multiplexer used to drive I/0 devices such as printers, plotters, and
modems. It is also possible to use a line as a time-sharing line some of the
time and as a communications line at other times. Some of the important
features of the CL handler are summarized below:

1. Up to 16 communication lines may be controlled through the CL handler.
The first 8 CL units are named CLO through CL7, the second set of 8 units
are named Cl0 +hrough Cl7. The lines may be connected to any type of
communication controller that is supported by TSX-Plus and may share the
same multiplexer controllers as TSX-Plus time-sharing lines.

2. Lines may be dedicated as communication lines or may be switched between
time-sharing lines and communication lines.

3. Internal queueing is wused within the handler to allow concurrent
input/output operations to be performed on all of the lines.

4. The CL handler allows both input (read) and output (write) operatioms.
Full duplex (simultaneous) read and write operations may take place on
each line.

5. The communication lines may be used with the TSX-Plus spooling system to
allow spooled output to devices on communication lines.

6. The CL handler responds to XON/XOFF (control-Q/control-S) control

characters to stop and start its transmission and will generate XON/XOFF
characters to control the speed of a device transmitting to a CL line.

41—

Special Device Handlers

7. A "binary mode" is available for CL lines to allow full 8-bit, transparent
I/0 to devices.

8. Modem control is supported. Ring and carrier detect signals may be
monitored and data terminal ready (DTR) can be controlled by a program or
SET command.

9. The CL handler is implemented as a system virtual overlay, minimizing the
amount of code and data that is required in the unmapped portion of the
system.

10. The CL handler can be used as a replacement for the LS, XL, and XC
handlers (the XL and XC handlers are used with the RT-11 VTCOM program).

11. A terminal can be "cross connected” to a CL line by use of the SET HOST
command so that characters typed at the terminal are sent directly out the
CL line and characters received on the CL line are displayed at the
terminal.

Once a system has been generated with communication lines, the lines may be
accessed as normal devices using the names CLO, CLl1l, Cl10, Cl7, etc. If the CL
handler is used to drive the system printer, it is convenient to use an assign
command to assign the logical name LP to the corresponding CL device.

The device name "CL" is functionally equivalent to "CLO". "Cl" is equivalent
to "Cl0". Attempts to use a CL unit which is not currently associated with a
line will return an error status just as if the CL device was not recognized by
the system.

5.1.1.1 I/0 operations: The .READ/.READC/.READW and .WRITE/.WRITC/.WRITW EMT s
may be used to perform standard read/write operations to the CL lines. The CL
handler allows full duplex input/output operation, which means that read and
write operations may be simultaneously active on a CL line.

When a .READ[C/W] EMT is used to read from a CL line, the operation is complete
when the requested number of words have been accepted or a control-Z character
is received.

The input character silo is used to store characters received from the line.
This buffer prevents characters from being lost during the interval when one
read EMT is completed and another is issued to the CL handler.

The CL handler responds to received XON (control-Q) and XOFF (control-S)

characters, starting and suspending transmission to synchronize its character
flow with the device connected to the line.

~42-

Special Device Handlers

5.1.1.2 Control character processing: Processing of certain control characters

through CL units depends on the individual character, the settings of the CL
unit and the particular operation in progress.

The following table illustrates the handling of special input characters to a
CL unit. Control characters not listed are treated as normal characters on

input.

Octal
Char Value Input handling
NUL 0 Discarded unless in binary input mode (BININ).
LF 12 Discarded unless in LFIN mode (always input by
.SPFUN 203).
CR 15 Always input. Also terminates read for .SPFUN 260.
XON 21 Re-enables transmission to CL unit, except in BININ

mode when it is input as a normal character.

XOFF 23 Halts transmission to CL unit, except in BININ mode
when it is input as a normal character.

~Z 32 Sets end-of-file flag and terminates read (except
for .SPFUN 203 by which "“Z is treated as a normal
character).

The following table illustrates the handling of special output characters to a
CL unit. In NOCTRL mode control characters not listed are not sent. In BINOUT
mode, all special control character output processing 1is bypassed. In
addition, in BINOUT mode automatic XOFF transmission when the input silo
becomes full is disabled.

-43—-

Special Device Handlers

Char

NUL

TAB

LF

FF

CR

5.1.1.3 .SPFUN operations:

Octal
Value Output handling

0 Never sent except in BINOUT mode.

11 Expanded to spaces in NOTAB mode. In TAB mode and width
not set to O, TAB is discarded if it would exceed the
set width, just as normal characters are.

12 Discarded in NOLFOUT mode if preceding character was a

carriage return.

14 In NOFORM mode, FF is expanded to enough line feeds to
advance to the top of the next page.

15 Discarded in NOCR mode.

are recognized by the CL handler.

CL unit to which the channel was opened.

Code Function

201 Clear handler

202 Control break transmission

203 Read with byte count

204 Get handler status

205 Terminate I/0

250 Set option flags

251 Clear option flags

252 Set page length

253 Set skip lines

254 Set page width

255 Get modem status

256 Set line speed

257 Abort pending I/0O

260 Read a line of input

261 Get number of input characters pending
262 Get number of output characters pending
263 Write with byte count

264 Set ENDPAGE and ENDSTRING parameters

Function 201 -- Clear handler.

(control-Q) to the CL device.

A

The following special function codes (.SPFUN EMT s)
The special functions apply to the specific

This function clears the internal handler flag
that says an XOFF (control-S) character has been received and transmits an XON

e

e

Special Device Handlers

Function 202 -- Control break transmission. This function starts or stops the
transmission of a break signal. The word count specified with the .SPFUN
controls whether transmission of a break signal is started or stopped. If the
word count is non-zero, break transmission is started; break transmission
continues until another .SPFUN is done with function code 202 and a word count
of zero.

Function 203 —- Read with byte count. This function performs a read operation
but the "word count” value specifies a byte count instead. This function does
not complete until at least one byte is read. However, if a byte count greater
than one is specified, bytes are moved from the input ring buffer until either
the specified byte count is satisfied or the input ring buffer is emptied. If
fewer than the requested number of bytes are available, the remainder of the
buffer is filled with nulls. The control-Z character does not signal end of
file for this type of read —- control-Z is read as an ordinary character.

Function 204 — Get handler status. A status code is stored into the first
word of the buffer specified with this function. The meaning of the flag bits
is as specified below:

Bit 0: 1 ==> XOFF has been sent to stop transmission.
Bit 1: 1 ==> XOFF has been received from the remote device.
Bit 2: 1 ==> Carrier has been detected

Function 205 -- Terminate I/0 to the line. This function "turns off" a
communication line. The input ring buffer is emptied (its contents are
discarded) and a flag is set causing any other characters received from the
line to be discarded. Data Terminal Ready (DTR) status is dropped. The line
will be turned on again whenever another I/0 operation is performed to it.

Functions 250 and 251 -- Control option flags. These special functions are
used to set and clear handler option flags. Function 250 sets the specified
flag bits, function 251 clears the specified flag bits. The flag bits
correspond to handler SET options. If the option flag is cleared (0), this
corresponds to the NOoption setting. The bit positions of the options are
shown in the following table. The option flags are contained in a one word
buffer for the .SPFUN. For a detailed description of the SET commands, see the
TSX-Plus Reference Manual.

-45-

Special Device Handlers

Bit Mask Option Function summary

0 000001 FORM Send form feed characters

1 000002 TAB Send tab characters

2 000004 LC Send lower case characters

3 000010 LFOUT Send line feed characters

4 000020 LFIN Accept line feed characters

5 000040 FORMO Send form feed on block O write
6 000100 BINOUT Send binary output characters

7 000200 BININ Accept binary input characters
8 000400 CR Send carriage return characters
9 001000 CTRL Send control characters
10 002000 DTR Raise Data Terminal Ready (DTR)
11 004000 EIGHTBIT Accept and send 8 bit characters

Function 252 -- Set page length. This function performs the operation of the
SET CL LENGTH=n command. The .SPFUN must have a one word buffer containing the
number of lines per page.

Function 253 -- Set skip lines. This function performs the operation of the
SET CL SKIP=n command. The .SPFUN must have a one word buffer containing the

number of lines to skip at the bottom of the page.

Function 254 -- Set page width. This function performs the operation of the

SET CL WIDTH=n command. The .SPFUN must have a one word buffer containing the
line width.

Function 255 -— Get modem status. This function is used to check on the status
of a modem connected to a CL line. The modem status is returned into the first
word of the buffer specified with the .SPFUN. The flag bits returned are
described below:

Bit Meaning when set

0 Ring indication
1 Carrier is detected
2 Data Terminal Ready is asserted
Function 256 -- Set line speed, character length and parity control. This

function is used to set the transmit/receive speed for a CL line. This .SPFUN
requires a one word buffer containing a value which has the following form (in
binary):

OPLxSSSS

The low-order 4 bits ("SSSS") specify the speed. The following baud rates are
represented by the indicated speed codes (speed code values are shown in
decimal): 50=0, 75=1, 110=2, 134.5=3, 150=4, 300=5, 600=6, 1200=7, 1800=8,
2000=9, 2400=10, 3600=11, 4800=12, 7200=13, 9600=14, 19200=15. Bit 5 ("L")
specifies the character length. If this bit is O, the character length is 8

46—

g

Special Device Handlers

bits; if this bit is 1, the character length is 7 bits. Bit 6 ("P") specifies
parity control selection. If this bit is 0, parity is disabled and bit 7 is
ignored; if this bit is 1, parity generation and checking is enabled. Bit 7
("0") selects even or odd parity and is only meaningful if bit 6 is 1 (enable
parity). If bit 7 is 0, even parity is selected; if bit 7 is 1, odd parity is
selected. Note that if only the speed value is specified, with all other bits
zero, 8 bit characters with no parity are selected.

This .SPFUN can only be used for lines connected to hardware controllers that
support programmable baud rates such as DLV11E, DZ1l, DZV11l, DH11l, DHV11l, and
the Professional printer and communication ports. A baud rate of 19200 is not
supported by some hardware controllers including the DEC DZ1l controller
(although it actually works with most DEC DZ1ll controllers). The DHl11l does not
support baud rates of 2000, 3600, or 7200; and the DHV1l does not support baud
rates of 3600 or 7200.

Function 257 —— Abort pending iI/0. Abort all pending read and write operations
issued by the job executing the .SPFUN on the CL unit.

Function 260 —— Read a line of input. This special function reads a line of
input terminated by a carriage return character. The "word count” value
specified with this special function is interpreted as a byte count. The read
terminates when any of the following conditions is met:

1. A carriage return character is received. The carriage return is
stored in the buffer and the remainder of the buffer is null filled.

2. The buffer is filled before a carriage return is received.
3. A control-Z is received.

Function 261 —— Determine number of input characters pending. One word is
returned into the user buffer, containing the number of characters available to
be read from the CL unit associated with the specified channel. This function
can be used to test for pending input prior to issuing a read (.READx or
.SPFUN) on the channel. If no characters are pending, attempts to read from
the channel will not complete until the word (or byte) count is fulfilled. If
you do not wish to have a read request pending until the word (or byte) count
is fulfilled, then first determine the number of characters pending in the
input buffer. If there are none, then do not issue the read.

Function 262 -— Determine the number of output characters pending. One word is
returned into the user buffer, containing the number of characters in the
output buffer which have not yet been transmitted.

Function 263 -- Write with byte count. This special function is used to write
a block of characters to a CL line with the length of the block specified by a
byte count rather than the word count used with the .WRITE EMT. This is useful
in situations where an odd number of bytes must be written and null characters
cannot be used to pad out the last word. The .SPFUN follows the standard form

-47-

Special Device Handlers

except a byte count is specified for the fifth parameter (which is normally
used to specify a word count).

Function 264 -- Set ENDPAGE and ENDSTRING parameters. This special function is
used to allow a running program to specify the number of form-feed characters
(ENDPAGE) and a seven character string (ENDSTRING) which will be appended to
the end of each output file. The buffer address must point to a word aligned
storage area of which the first word contains the number of form-feed char-
acters. The second and subsequent words contain the string in ASCIZ form to
append to the end; any characters beyond the first seven are ignored.

5.1.1.4 Redirecting CL and time-sharing lines: A system service call (EMT) is

available to allow ;_program to assign a CL unit to a particular line. The
form of the EMT is:

EMT 375
with RO pointing to an argument block of the following form:

.BYTE 0,155
.WORD CL unit
.WORD line_pumber

where "CL unit" is the CL unit number, and "line number” is the number of a
TSX-Plus time-sharing line or dedicated CL line. If the specified line number
is 0 (zero), the CL unit is disassociated from any line. TERMINAL privilege is
required to use this EMT.

If an error is detected, the C-flag is set on return and the following error
codes are returned:

Code Meaning

User issuing the EMT does not have TERMINAL privilege
An invalid CL unit number was specified

An invalid line number was specified

The specified line is already assigned to a CL unit
A time-sharing user is logged onto the specified line
The specified CL unit is currently busy

[o)W S VU N

CL units specified using the CLDEF macro in TSGEN are initially connected to
dedicated CL lines. Note that although these lines are dedicated for use by
CL, the CL units which are initially assigned to these lines may be reassigned
to other lines. The unallocated CL units declared by use of the CLXTRA
parameter in TSGEN are initially not associated with any line. The SET CLn
LINE=n and SET HOST/PORT=CLn keyboard command or the system service call (EMT)
can be used to assign any CL unit to any free time-sharing line or free
dedicated CL 1line. Thus it is possible to use a line as a TSX-Plus time-
sharing line during certain portions of the day and then assign a CL unit to
the line and use it to drive a modem or other device during other portions of

-48—~

-

Special Device Handlers

the day. Dedicated CL lines use less memory space than time-sharing lines but
may only be accessed as CL units. See the TSX-Plus Reference Manual for a full
description of the SET CL and SET HOST command. TERMINAL privilege is required
to use these SET commands.

The following example commands illustrate how CL unit 1 can be assigned to
time-sharing line 2. The logical name "LP" is then assigned to CLl so that the
PRINT command will direct output through CL1l. CLl can be declared to be a
spooled device in TSGEN:

.SET CL1 LINE=2
.ASSIGN CL1 LP

The SHOW CL and SHOW TERMINALS keyboard commands can be used to display
information about which CL units are associated with which lines. The SHOW CL
command also indicates if a CL unit is spooled and lists the options which are
set for the unit. See the TSX-Plus Reference Manual for information concerning
the SHOW command.

5.1.1.5 VTCOM/TRANSF support and CL handler: The RT-11 VTCOM/TRANSF file

transfer programs may be used to communicate and transfer files between RT-11
and/or TSX-Plus systems.

When VTCOM is used to communicate with another system, the system where the
user is located and running VICOM is known as the "local" system whereas the
remote system to which communication is taking place is known as the "host"
system. TSX-Plus may be used either as the local system, the host system, or
both.

The user at the local system runs the VICOM program to initiate communication
with the host system. The VICOM program uses the CL handler to connect to a
communications line. The CL handler must be set up to drive a DL1l, DLV1l,
DZ11, DzZV1l, DHl1l, DHV1l, or Professional printer or communication port that is
connected either directly or through a modem to the host system.

When TSX-Plus is used as the local system, the IOABT sysgen parameter must be
set to 1 to enable handler abort entry code.

I1f the CL handler is used with the VITCOM program, it is necessary to assign the
logical name XL (or XC if on the Professional) to the CL (or Cl) unit control-
ling the communications line. It is also a good idea to allocate the device so
that conflicts with other users will not occur. The NOLFOUT option should be
specified for a CL line used with VICOM. For example, the following commands
would be appropriate to direct VICOM to use line CLO:

.SET CLO NOLFOUT

.ASSIGN CLO XL (or XC)
.ALLOCATE XL (or XC)

-49-

Special Device Handlers

When TSX-Plus is used as the host system, the connection from the local system
may be made through any TSX-Plus time-sharing line on the host system.

5.1.1.6 Terminal/Communication line cross connection: It is possible to cross
connect a time-sharing line with a CL (communication line) line in such a
fashion that all characters received from the time-sharing line are transmitted
directly to the CL 1line and all characters received from the CL line are
transmitted directly to the time-sharing line. This is useful to allow a
time-sharing line on one TSX-Plus system to be used as a terminal on another
system connected through a CL line.

This function is similar to using VTCOM to communicate through a CL line but
has the advantage that there is much less overhead because the cross connection
is made at a low level within TSX-Plus such that characters do not have to be
passed to a running application program. Of course the internal cross-
connection feature does not provide the file transfer capabilities of VTCOM.

The keyboard command used to establish a cross connection has the form:
SET HOST/PORT=ddn

where "ddn" is the name of a CL or Cl device to which your terminal is to be
cross connected. For example, the following commands would connect CL unit 1
with terminal line 4 at 9600 baud and then cross connect the current terminal

with the CL unit:

SET CL1 LINE=4,SPEED=9600
SET HOST/PORT=CL1

TERMINAL privilege is required to use the SET HOST command. Once the cross
connection is established, characters typed at your terminal are transmitted to
the CL line.

5.1.2 RKO6/RKO7 handler (DM)

The DM device handler .SPFUN function codes 376 and 377 attempt to return a
status code into the first word of a user buffer which is one word longer than
the actual transfer size. This is incompatible with system I/0 mapping. It
appears that the only system utility program which issues these functions is
DUP (SQUEEZE and INITIALIZE commands). If it is necessary to use the MAPIO
option with the DM device handler, it is recommended that both INITIALIZE and
SQUEEZE commands for DM units be issued only under RT-11.

The DM handler supports 22-bit (as well as 18-bit) QBUS I/0O with the DILOG
DQ215 and the Emulex SC02C controllers.

-50-

Special Device Handlers

5.1.3 IEEE GPIB handler (IB)

The normal IB supplied subroutines attempt to open the IB device on decimal
channel numbers 16, 17, 18, and 19. TSX-Plus normally allocates 20 (decimal)
channels and allows these IB subroutines to execute without changes. Non-
standard configurations where multiple devices may be used and more than 20
(decimal) channels are required are not supported.

A change is also necessary to the IB device handler to alter the mapping
register used from PARL to PAR6. See the section concerning device handlers
use of PARs discussed earlier in the chapter on Device Handlers. See the
Patching and Building TSX-Plus Device Handlers chapter in the TSX-Plus
Installation Guide for information on how build an IB handler which will
function with TSX-Plus.

The IB subroutine "IBSRQ" is implemented in the DEC IB handler as a subroutine
call from the handler directly to the user code region. Since TSX-Plus does
not load any user job in the same map region as the operating system, the call
will execute part of the operating system usually resulting in a fatal system
error or halt. Therefore, the "IBSRQ" call is unsupported in TSX-Plus.

5.1.4 Virtual memory handler (VM)

The virtual memory handler (VM) allows memory which is not allocated for use by
the operating system to be used as a RAM based pseudo-disk device. VM may not
be used to contain either the swap or spool system files due to the nature of
system completion routine nesting. When VM is used as a spool or swap device,
unpredictable operation may occur resulting in fatal system errors and system
halts.

The VM handler uses the memory space above the top of memory used by TSX-Plus.
TSX-Plus can be limited to using less than all installed memory by specifying
the TSGEN MEMSIZ parameter. (See the TSX-Plus Installation Manual for details
on the MEMSIZ setting.) Since a memory access is quite a bit faster than a disk
access, VM can be use for greater speed in locating and reading files which are
frequently accessed.

Since most machines will lose the contents of memory during a power outage, VM
should be restricted to read-only, scratch, or executable files. It may be
used to speed the execution of heavily overlaid programs or store temporary
intermediate sort or work files.

After TSX-Plus is started, VM must be initialized before it can be used. Since
VM is implemented as a block structured device, and each block contains 512
bytes, the number of blocks available to VM will be two times the number of K
bytes allocated. The directory does require some storage and therefore the
number of blocks reported after initialization will be slightly smaller than
this total. For instance, in a system which contains 512K bytes total physical
memory and with MEMSIZ=256., VM will have 256K bytes available. After
initialization, a directory of VM will then show slightly less than 512 blocks.

-51-

Special Device Handlers

VM will normally calculate the correct base address to use to be just above the
last address used by TSX-Plus. You may increase this base address. The format
of the SET command used to adjust the base address used by VM is:

SET VM BASE=nnnnnn

where "nnnnnn" represents bits 6 through 22 of the base memory address (in

octal) which VM is allowed to use. However, if you specify a base address
below the top address of TSX-Plus, VM will dynamically adjust this base address
back above the top of TSX-Plus. For example, if you wish to set the base
address of VM to start after the first 512K bytes, then "nnnnnn" should be
20000 since the memory address is 2000000 (octal). - Any time a new base address
is defined, VM should be initialized.

VM will normally calculate the correct top address to use to be at the absolute
top of physical memory. You may decrease this top address. The format of the
SET command used to adjust the top address used by WM is:

SET VM TOP=nnnnnn

where "nnonnn" represents bits 6 through 22 of the top memory address (in
octal) which VM is allowed to use. For example, if you wish to set the top
address of VM to end at 1280K bytes, then "nnnnnn" should be 50000 since the
memory address is 5000000 (octal). Any time a new top address is defined, VM
should be initialized.

-52-

S

6. TERMINAL AND CL INPUT/OUTPUT PROCESSING

6.1 Terminal input character processing

To achieve maximum efficiency, TSX-Plus divides the terminal character input
processing into three sections. The first section performs minimal character
processing and runs at device interrupt priority level. The second section
performs more lengthy character processing and runs at fork level. The third
level passes characters to requesting programs and runs at program level. This
system was chosen to minimize both system overhead and the time spent running
at interrupt level. The interrupt and fork level character processing routines
are illustrated in the following diagram: .

Terminal Input Character Processing

Interrupt Level Processing Fork level Processing
| Input interrupt | | Fork entry |
| |
v + >+
+ + b | |
| Get character from | | v
| hardware controller | | + + 1
+ + + | | Get next character [|silo empty
| | | from silo buffer | ===+
v |+ + + |
+ + —+ l I l
| Process XOFF and | | v |
| XON characters | |+ + + |
+ + + I | Do main character | |
| | | processing | |
v |+ + + l
- + —+ l I |
| Move character into | | v |
| input silo buffer | | + + + |
+ + + | | Move character into | |
| | | input ring buffer | |
v |+ + —+ |
+ + i | | I
| Request fork level | | v |
| processing if not | +< + |
| already active | v
-t 4 - . e e
| |
v v
| Return from interrupt | Exit from Fork |
+ + +- +

53—

TT and CL I/0 Processing

6.1.1 Interrupt level input character processing

In order to minimize system overhead and the length of time running at
interrupt level, only a small amount of character processing takes place in the
input character interrupt routine. When an input interrupt occurs, the input
interrupt routine is entered at device interrupt priority level. The received
character is checked to see if it is an XOFF (control-S). 1If so, a flag is set
causing character output on the 1line to be suspended. If the terminal
controller is a DMA device such as a DH-11 or DHV-11 the current DMA transfer
is aborted and information is saved to allow it to be restarted later. Next
the character is checked to see if it is an XON (control-Q). If so, the
output-suspension flag is cleared for the line and transmission to the line is
restarted.

If the received character is other than XOFF or XON, it is stored into a
holding buffer known as the input character "silo”. It is called a silo
because it functions as a first-in-first-out holding buffer. There is a
separate character silo for each line. The default silo size is set by the
TSGEN parameter NCSILO and the size of a silo for a particular line may be
controlled by the SILO macro within a TSGEN line definition block. The maximum
silo size allocated is 255; specification of silo sizes greater than this are
reduced to be 255. 1If the number of free character positions available in the
silo is reduced to a value equal to the TSGEN parameter NCXOFF (or specified by
the SILO macro), an XOFF character is transmitted. If the silo overflows, the
input character is discarded. When an XOFF character is transmitted due to the
silo becoming nearly full, a flag is set which causes an XON character to be
sent when the number of characters remaining in the silo decreases to a value
equal to the TSGEN parameter NCXON (or specified by the SILO macro).

The process of getting a character from the hardware controller, checking it,
and storing it in the input silo, is repeated until all pending characters have
been accepted from devices such as DZ(V)-11 and DH(V)-11 which have hardware
silo buffers.

After all pending characters have been processed and moved to the input silo, a
check is made to see if fork level input character processing is active due to
a previous input interrupt. If fork level processing is not active, a flag is
set saying fork level processing is active and then a .FORK is done and fork
level input character processing takes place. Once the fork level processing
routine has been entered, the interrupt priority level is set to O (zero) and
further input interrupts can occur. If additional interrupts occur while the
fork level routine is running, they move characters into the input silos but do
not reenter the fork level processing routine until it has finished processing
all of the characters in the input silos.

The most critical parameter related to the input silo buffers is the one which
controls how nearly full the silo is allowed to become before an XOFF character
is transmitted. This parameter must be large enough to allow time for the XOFF
character to be transmitted by the TSX-Plus system, and received and processed
by the remote system. The minimum acceptable value depends on the speed of
transmission and the responsiveness of the remote system. The recommended
value is 12.

~54~

TT and CL I/0 Processing

The silo parameter that controls when an XON character is transmitted is not
critical. The recommended value is 4.

The total silo buffer size should be large enough to allow some room between
the XOFF and XON points. If the character input rate is slow (for example from
a terminal being used by a typist) the buffer size can be as small as a few
characters plus the XOFF and XON parameter values. However, if the input is
being received from another computer which can send high speed bursts of
characters, then the buffer size should be increased to avoid rapid trans-
mission of XOFF/XON character pairs. The ideal size of the silo buffer for
this type of application is equal to the received packet size plus the XOFF
cutoff parameter value. The silo buffers occupy space in the 40Kb low memory
portion of TSX-Plus so they should not be made excessively large.

6.1.2 Fork level input character processing

The work performed on each character in the fork level routine is much more
extensive than that done at interrupt level. The major tasks performed in the
fork level routine are:

1. Processing of control characters such as control-C, control-W,
control-U, control-R, and delete.

2. Checking for activation characters (such as carriage return) and
restarting a program waiting for terminal input when one is

received.

3. Echoing characters (including updating the window contents if
process windowing is turned on).

4. Checking for field width activation and field width limits.
5. Storing the character into the appropriate input ring buffer.

In addition to the input silo buffer, each line has an "input ring buffer”
which is used by the fork level routine to hold characters until they are
accepted by the program. The default size of the input ring buffer is set by
the DINSPC sysgen parameter but it may be controlled on a line-by-line basis by
use of the BUFSIZ macro in TSGEN. If the number of free character positions in
the input ring buffer is reduced to 8, a flag is set for the line preventing
further characters from being moved out of the silo buffer. Thus characters
will accumulate in the silo buffer until it is nearly full at which time an
XOFF character is transmitted.

The fork level routine executes until all pending characters in silo buffers
for all lines have been processed.

-55-

TT and CL I/0 Processing

6.1.3 Program level input character processing

The third level of character processing takes place at program execution level.
The primary purpose of this routine is to move characters from the input ring
buffer to the user program as they are requested by system service calls such
as .TTYIN, .GTLIN, and .READ. If the single line editor (SL) facility is
active, its processing is performed within this routine. This routine is also
responsible for suspending the execution of a job which requests terminal input
when no more activation characters have been received.

6.2 CL input character processing

Input character processing for CL lines is organized in a fashion similar to
that used for time-sharing lines. The same input interrupt routine is used for
time-sharing lines and CL lines and the same silo buffers are used to store
characters as they are received. However, different routines are called to
perform fork level processing. Fork level processing for CL lines is simpler
than for time-sharing lines since there are fewer significant control char-
acters. Also, no input ring buffers are used for CL lines. Instead, the fork
level routine moves characters from the silo buffer into the data buffer
specified for the .READ issued to the CL device.

-56—

TT and CL I/0 Processing

6.3 Terminal output character processing

As with terminal input character processing, terminal output character
processing 1is separated into levels. However, there are only two levels for

character output processing: program level and interrupt level. The diagram
below illustrates the output character processing routines:

Terminal Output Character Processing

Interrupt Level Processing Program Level Processing
F + +- +
| Output Interrupt l | Main character |
+ b + | processing |
l + + +
v I
+ + + v
| Get next character | +-—- t +
| from output ring l | Place character in |
| buffer | | output ring buffer |
. ' - -t [l . .
L T 1 L)) L)
v v
+ + + +- + +
| Transmit character | Start transmitter
+ + + + + +
| |
v v
+ + —+ +- + +
| Return from interrupt | Finished
+ + + +

6.3.1 Program level output character processing

Almost all of the processing done on characters being transmitted is performed
at program level. The major character processing operations are summarized
below:

-57-

TT and CL I/0 Processing

1. Check for TSX-Plus terminal control program operations such as

defining a new activation character, setting field width, etc.
(Lead-in character followed by function code.)

2. Optionally perform terminal logging.
3. Optionally expand tabs into spaces.

4. Optionally convert form feed characters into 8 line feeds.

5. If process windowing is turned on, update the contents of the
current window.

6. Place character in output ring buffer.

As each character is processed by the program level routine, it is checked to
see if it is a control character which requires special processing, such as
tab, form feed, and the TSX-Plus lead-in character. Characters are then stored
into the output ring buffer for the line. The default size of output ring
buffers is set by the DOTSPC sysgen parameter or may be set for an individual
line by use of the BUFSIZ macro in TSGEN. If the output ring buffer becomes
full, the execution of the job is suspended until the number of characters in
the output ring buffer equals the OTRASZ sysgen parameter, at which point the
execution of the job is resumed. As characters are placed in the output ring
buffer, a routine is called to try to start transmission to the line.

In the case of communication controllers such as DH-11 and DHV-11 which support
DMA transmission, an additional routine is called to move characters from the
output ring buffer into linear buffers that are used for the DMA transmission.

6.3.2 Interrupt level output character processing

Since most of the character processing is done at program level, the output
interrupt level routine is very simple. If the output ring buffer is not
empty, the interrupt routine removes the next character from the output ring
buffer and transmits that character. It also checks an output-suspended flag
which is set when an XOFF character is received.

6.4 CL output character processing

Output character processing for CL lines is similar to that for time-sharing
lines. The primary difference is that a separate output ring buffer is used
for CL lines than for time-sharing lines. The default size for the CL output
ring buffers may be set by use of the CLORSZ sysgen parameter or by use of the
BUFSIZ macro in TSGEN. The recommended size for output ring buffers is
((3*baud rate)/1000+3). For example, the recommended ring buffer size for a
9600 baud line is ((3*9600)/1000+3) or 32.

-58-

otz

TT and CL I/0 Processing

6.5 Terminal and modem protocols

TSX-Plus provides full support for dial-up lines connected to modems. A line
is declared to be a dial-up line by use of the "$PHONE" flag in the line
definition block in TSGEN. The SET TT n PHONE keyboard command may also be
used. A line which is declared to be a phone line may also be used with a
directly connected terminal.

When experiencing difficulties with terminals or modems, it is important to
keep in mind that several levels of hardware and software are involved. These
include at least: terminal hardware, terminal firmware, cable(s) from terminal
to interface card, interface card hardware, interface card firmware, computer
hardware, and system software.

6.5.1 Interface cards

Under RT-11 the console (operator”s terminal) must be connected through a
DL(V)1l type interface. A serial printer using the LS handler must also use a
DL(V)11l type interface. TSX~Plus supports several types of asynchronous
interface protocols to which you may attach terminals, modems, serial printers,
or other serial devices. These include cards such as: DL11 and DLV1l, which
may support one or more lines and modem control, depending on the version; DzZ11
and DZV1l multiplexers, which support 4 to 8 lines, depending on version, and
include modem control; DHV1l multiplexers which support 8 lines and include
modem control; and DHI11l multiplexers which support 16 lines with optional modem
control. The DH1l and DHV1l multiplexers utilize DMA (direct memory access) to
improve terminal output efficiency. Note also that the programming protocols
for DH11 and DHV1l multiplexers are distinctly different - they must be

declared correctly during system generation.

Non-DEC vendors also supply interface cards which implement most of these
protocols, but they may vary in implementation of such features as number of
lines supported or optional modem control. The type of interface selected will
vary according to which features you need, number and type of peripherals to be
connected and expense. The DL11 and DLV1l type cards are in most cases not
programmable for features such as speed and parity control, instead being
jumper or switch selectable on the interface card when it is installed. 1In
addition, they utilize separate interrupt vectors for each individual line.

When configuring a system with many terminals, it is difficult to configure the
cards without conflicting with other devices. Remember that no two devices can
share the same interrupt vectors or CSR addresses. Interface card selection is
also influenced by the relative power consumption of the boards. For example
the 4-line DLV11J only draws 1 A from the 5V supply, whereas the 8-line DHV1l
draws 4.3 A at 5V (as listed in the Digital Networks and Communications Buyer”s
Guide). The consequences of inadequate or marginal power can lead to errors
which are extremely difficult to reproduce and to diagnose.

The DZ11, DzZV1l, DH1l and DHV1l type interfaces permit software selection of

features such as speed and parity control. They support multiple terminals
through the same vector and CSR. This enhances the flexibility of configu-

59

TT and CL I/0 Processing

ration and use when adding or changing peripherals. However, most serial
device handlers such as LS or specially written handlers support only the DLl1
and DLV1l type interfaces.

TSX-Plus includes a special device handler, CL, which supports up to 16 lines
as serial I/O devices. The CL handler can use any mixture of the interface
types listed above and may be used to connect serial printers through multi-
plexers. The CL handler can replace the standard LS and XL (and XC) device
handlers for most purposes. But if you have special requirements like filler
characters or flow control other than the XON/XOFF protocol, you will probably
need to use a special device handler and a DL1l or DLV1l type interface card.
If you wish to attach a modem, you should also have an interface card which

supports modem control.

6.5.2 Wiring
- The connection from the interface card to the peripheral device is most
commonly made according to the EIA RS-232-C standard with DB-25 connectors.
The interface cards themselves usually terminate in DB-25P (male) connectors,
and are considered as DTE (Data Terminal Equipment) devices. (DLV1lJ cards
have 2X5 pin AMP connectors, but are commonly converted with short "pigtail”
cables to a DB-25P connector.) Most terminals are also DTE devices and have
DB-25P connectors. For DEC interface cards, only a few of the 25 pins in these
connectors are significant. The pins significant to TSX-Plus are:

Protective ground

Transmitted data

Received data

Signal ground

Received line signal detector (Carrier detect)
Data terminal ready

Ring indicator

NOo~NWN -

2
2

When using DEC interface cards and DEC peripherals, protective ground (pin 1)
is usually connected internally to signal ground (pin 7) so there is no need to
wire it through the cable. Since both the interface cards and peripherals are
DTE equipment, there is a slight conflict in definition of the sender and
receiver, resulting in a conflict on pins 2 and 3. When two DTE devices are
connected through modems (modems are DCE devices, Data Communications Equip-
ment), the modems translate the signals and reverse the sense of send and
receive between the two devices so that what one device sends is considered
received data on the other device. However, when the interface card is
directly connected through a simple cable to the peripheral, the send and
receive lines need to be reversed so that transmitted data from one end is
correctly converted to received data at the other end. This type of connection
is usually called a "null modem". DCE devices like modems usually use DB-25S
connectors, so a null modem should also terminate in DB-25S (female) con-
nectors. In the simplest case of connecting a terminal directly through a null
modem cable to the interface card (or panel connector routed to it), only pins
2, 3, and 7 need be connected and 2 and 3 should be reversed at the two ends.
This would look diagrammatically something like:

-60-

N

TT and CL I/0 Processing

Interface Cable Cable
Card End Cable End Terminal
(DBE-25P) (DB-25S) (DB-25S) (DB-25P)
2 = >- 2 \/- 2 < <~ 2
3 -> >~ 3 /\ 3 < <~ 3
7 => > 7 7 < <~ 7

When actually attaching to a modem or modem-like device such as a line-driver,
the DCE device performs the translation of transmitted data to received data
and pins 2 and 3 should not be reversed. If you are connecting to a device
which uses modem control (declared to TSX-Plus as a phone line), then pins 8,
20 and 22 should also be wired. An extension cable with 6 wires is then
usually used to connect the interface card or terminal to the modem. This
typically looks like:

Interface ((
Card or Cable Cable C(
Terminal End Cable End Modem (((((Phone
(DB-25P) (DB-25S8) (DB-25P) (DB-258) ((((

2 = >=- 2 2 = > 2 ((
3 => >3 3 = >3
7 = > 7 7 => >= 7
8 -> >- 8 8 -> >- 8
20 => >-20 20 => >=-20
22 => >=22 22 => >=22

Other devices, such as non-DEC terminals or printers, can sometimes have
additional wiring requirements. For example, we worked a long time to correct
a buffer overrun condition on a NEC printer attached to a DHVI1l using the CL
handler. There appeared to be some problem with XON/XOFF flow control which
caused CL to send characters when the printer was not ready to accept them,
while the same printer worked correctly with an IBM PC. We finally identified
the additional requirement of the NEC printer to receive a signal on pin 6
(Data Set Ready) before it could transmit. This prevented it from sending XOFF
to the system, resulting in the buffer overruns. This signal was present with
the interface and cable used with the IBM PC. The problem was finally remedied
by simply shorting together pins 6 and 20 at the printer end of the cable.
Since CL always raises DTR (Data Terminal Ready, pin 20) for each I/0 oper-
ation, this kept pin 6 high for the NEC, allowing it to transmit an XOFF when
its buffer fills. The object lesson is to fully understand the requirements of
your hardware when dealing with unusual equipment.

6.5.3 Communication parameters

Several parameters control the data transmission format. For DL11l and DLV11
type cards, the character formats are selected by jumpers during installation
of the cards. Baud rates are also preset by jumper, except on the DLVI1IE for
which programmable baud rates are available, but not character length or
parity. On DZ1l, DZV1l, DH1l and DHV1l type cards, TSX-Plus allows you to
dynamically select: baud rate within the range supported by the card; parity
control of even, odd or none; and 7 or 8 data bits. The most common format for

-61-

TT and CL I/0 Processing

terminals is 9600 baud with 8 data bits and no parity. For hardcopy terminals
such as an LA120, the common settings are 1200 baud with 8 data bits and no
parity control.

6.5.3.1 Character frames: The character format can be conceptualized as a
stream of high and low voltage pulses (representing bits) clustered into
groups, called frames, which represent individual characters. All the devices
supported as terminals or CL units by TSX-Plus are asynchronous, which means
that a new frame is signalled by a start bit and ended with a stop bit, and
that the separation between frames (characters) may be variable. The baud rate
controls the duration of voltage pulses within each frame; the higher the baud
rate, the less time between individual data bits.

A new frame is always signalled by one start bit. This is followed by either 7
or 8 data bits representing the character, then an optional parity bit and at
least one stop bit. The number of data bits, parity control and number of stop
bits are selected by jumpers on DL type interface cards. Multiplexer lines may
be set to either 7 or 8 data bits during system generation (default is 8), or
during operation with the SET TT BITS command. Parity may be set to EVEN, ODD
or NONE on multiplexer lines either during system generation (default is NONE),
or during operation with the SET TT PARITY command. TSX-Plus always defaults
to 1 stop bit on multiplexer cards. The number of stop bits is not usually
critical since it effectively controls only the minimum separation between
frames.

6.5.3.2 Parity: Parity control works by counting the number of data bits in
the frame which are a logical 1. If parity is turned off, then no parity bit
is transmitted or it is ignored on receipt. If parity is set EVEN, then the
parity bit will be turned on when the number of logical 1 data bits in the
character is odd and will be turned off when the number of logical 1 data bits
is already even, so that the cumulative count of data and parity bits is even.
The inverse operation is performed for odd parity. TSX-Plus does not support
other parity protocols such as: MARK - parity bit always on; or SPACE - parity
bit always off.

6.5.3.3 Automatic baud rate determination: TSX-Plus pernits time sharing lines
to be generated with automatic baud rate detection. That is, the speed of the
terminal does not have to be preselected during system generation, but rather
can be determined by the system by analyzing the first one or two carriage
returns received from the terminal when it first logs on. This is done by
initially setting the inactive line speed to 9600 baud. Then, when the first
carriage return character is typed to activate the line, the character received
by the interface may or may not appear to be a carriage return. If the
terminal is set to 9600 baud, then the character should match and the system
leaves the baud rate set at 9600. If the terminal is not transmitting at 9600
baud, then the bit pattern seen by the interface card will not match a carriage
return. The character apparently received by the interface card is compared
with a table of values which would be received if the terminal were trans—
mitting at some other speed. If a match is found, then the line is set to the
corresponding baud rate. If no match is found, then the speed for that line is

-62-

TT and CL I/0 Processing

set to 600 baud and another carriage return is required. The process is
repeated to match the apparent character with a table of expected values for a
lower range of baud rates. If no match is found with this lower set of baud
rates, then the speed is reset to 9600 baud and characters are ignored for a
few seconds; the process then repeats until one of the allowed baud rates is
selected.

This process can be demonstrated by looking at the input bit pattern for an
ASCII CR (carriage return) character at 9600 and 4800 baud. The diagram below
shows how the signal voltage levels might look on an oscilloscope trace for a
single character frame (ASCII CR) at the two rates. Think of the signal as
flowing in from the left and moving out to the right. The inactive line
between character frames is indicated by the dots, usually at the MARK level
(M). The start of the character frame is signalled by a start bit (usually a
SPACE level (S)), followed by high or low levels appropriate for the individual
bits of the character being transmitted, least significant bits first. The
vertical lines indicate the approximate time points at which a device moni-
toring the line at 9600 baud would measure the voltage in both cases. Note
that the character that would appear to be received if the 4800 baud CR were
sampled at the expected timing for a 9600 baud line would be an octal 146 ("f")
instead of 015 for a CR. Other baud rates would generate other apparent
characters, and by matching the current baud rate with a table of these
apparent characters the actual external baud rate can be surmised.

MOO0OO1101S ==>015CR
L

o0 o CECECINY

9600 baud

4800 baud

LT T

11001108 ==>146 "f"

6.5.3.4 Break keys: Pressing the break key on a terminal usually generates a
"long space” condition. When received, this results in a framing error because
the stop bit does not occur within the expected time interval after the start
bit. If the time-sharing line is set for a fixed baud rate or speed has
already been selected on an “"autobaud” line, then the (NUL) character is
flagged with a framing error and passed through to normal character input
handling. If the line is set for autobaud, and speed has not yet been
selected, then it is handled as described in the section on autobaud. What
happens at the computer on receipt of a break also depends on the type of
interface card receiving the character. On multiplexer cards, receipt of a
break character simply sets the framing error flag for the line. On DL type
cards, installation options determine the result of incoming break signals;
when the framing error bit is set it may cause a reboot or cause the processor
to halt. On DLV11-J cards, these options only apply to channel 3, and should
only be enabled when connected to the console terminal. The only effect of

-63-

TT and CL I/0 Processing

framing errors on terminal input to TSX-Plus (except as noted for autobaud
detection) is to bypass masking for 7-bit characters and skipping the tests for
XON/XOFF receipt. The (erroneous) character is otherwise simply stored in the
terminal input buffer.

There are two separate levels of data bit control. One level controls the
multiplexer hardware (number of data bits on DL type interfaces is selected by
jumpers at installation) and determines whether the multiplexer will transmit 7
or 8 data bits. This hardware control is selected by the SPEED macro in TSGEN
or dynamically with the SET TT BITS command.

In addition, software masking of characters may also be done, regardless of
whether the hardware is set for 7 or 8 data bits. This is the process of using
only some of the characters which may actually be presented by the hardware.
When 7 bit mode is selected, TSX-Plus clears any incoming eighth bit on
terminal input before passing the character on to the program and masks output
characters to the low 7 bits before sending them to the terminal interface
card. This software masking is selected with the $8BIT option to the FLAGS
macro in TSGEN or by the SET TT [NO]JEIGHTBIT command during execution. Note
that hi-efficiency terminal mode and CL binary mode bypass software 7-bit

masking.

6.5.4 Flow control (XON/XOFF)

You may use almost any standard asynchronous terminal with TSX-Plus. However,
the only flow control method supported is XON/XOFF (DC1/DC3,
Control-Q/Control-S). Filler characters or other protocols such as ETX/ACK are
not supported. Using the XON/XOFF protocol, if the terminal can”t handle
characters sent to it as fast as the computer can transmit them, then it sends
to the computer an XOFF character, which causes the system to stop transmitting
until it sees an XON character. Then, when the terminal empties its internal
buffer and is ready to accept more characters, it sends an XON character to the
system which in turn resumes transmission of characters to the terminal. If
your terminal does not understand XON/XOFF, then buffer overruns are likely
except at very low baud rates. Similarly, if the terminal transmits characters
faster than the system can handle them, the system will send an XOFF to tell
the terminal to stop transmitting, and will send an XON when it is ready to
receive more characters.

In some special circumstances, it may be desirable to disable XON/XOFF
processing by the system, such as when it is necessary for a program to read
one of those two special characters from the terminal or when special circum-
stances dictate that the program handle its own flow control. The $PAGE option
to the FLAGS macro in TSGEN and the SET TT [NO]PAGE command control whether
TSX~-Plus uses XON/XOFF flow control. The choice is between XON/XOFF control or
no control. Disabling system XON/XOFF control causes TSX-Plus to treat XON and
XOFF as ordinary control characters. The system does not intercept them, but
rather passes them through to the terminal input buffer. This allows user-
written programs to handle special cases.

-64—

TT and CL I/0 Processing

6.5.5 Terminals

TSX-Plus cannot create features which your terminal does not have; for example,
lower case characters are meaningless when using an ASR33 teletype. Other
terminals may or may not understand such characters as TAB or FORM FEED.

These, however, can be simulated to some extent by TSX-Plus. You may use the
SET TT NOFORM and SET TT NOTAB commands to simulate them when necessary.

The SYSMON program, which is currently the only screen oriented utility
supplied with TSX-Plus, can use several terminal types (VT200, VT100, VT52,

ADM3A and HAZELTINE).

The RT-11 KED editor is used with VT100 type terminals or VI200 type in VT100
mode. VT52 terminals should use the similar K52 program. Lower case must be
enabled to use either of these programs since the numeric keypad in alternate
keypad mode generates escape sequences with lower case characters. If the
system translates these to upper case, then the editing programs will not
correctly recognize some keypad commands. When the terminal type is known to
TSX-Plus, it automatically selects the correct program, according to the
terminal type, when either KED or K52 is invoked through the EDIT command .
This means that if you use the commands:

SET TT VT52
SET EDIT KED
EDIT TEST.DAT

Then, the program which is actually run by the system will be K52 to correspond
to the terminal type, rather than KED as requested. If on the other hand, you
explicitly RUN KED, then you will actually execute KED. The system interprets
the EDIT command and selects the appropriate program, but does not override
explicit program selection.

VT200 series terminals may be used either in either VT100 or VI200 mode. When
in VT100 mode, the terminal setup should be VT100 with 7-bit controls. When in
VT200 mode, the terminal setup should use 8 data bits and no parity. Some
VT200 keys behave differently in VT100 and VT200 modes, most notably the Fll,

F12, and F13 keys. 1In VT100 mode, these keys are:

Fll1 ESC (escape)
F12 BS (back space)
F13 LF (line feed)

However, in VT200 mode, the top row function keys F6 through F20 all generate
four character special ANSI escape sequences. Most programs written for use
with VT100 or VT52 terminals will not recognize these sequences. Using the
TRMTYP VT200 macro in TSGEN or the SET TT VI200 command also automatically sets
the $8BIT flag; unless the terminal itself is also set to 8 data bits and no
parity, it will appear dead. The $8BIT flag is not automatically reset by the
SET TT VT100 command.

-65-

TT and CL I/0 Processing

6.5.6 Modems

There are many kinds of modems available today, ranging from those with only
the most basic capability to convert between digital signals and acoustic tones
to very sophisticated, "intelligent"” devices. Most modern modems at least have
the features of direct connection to the telephone system and automatic
answering capability. We will not specifically discuss acoustic coupler type
modems as they require a lot of manual intervention.

If TSX-Plus is to handle a line as a modem, then it must be identified as a
phone line either by the S$PHONE option to the FLAGS macro in TSGEN or with the
SET TT PHONE command during system execution. If TSX-Plus is to handle the
modem, then the line must also be connected to an interface card which supports
modem control (most multiplexers do, a DLV1lJ does not), the modem must be
configured to a "standard” auto-answer configuration, and the modem and cable
must support the following signals:

Pin Signal name

2 Transmitted data

3 Received data

7 Signal ground

8 Carrier detect
20 Data terminal ready
22 Ring indicator

The normal sequence of events for a dial-in phone line is:

1. The phone rings (possibly several times)

2. TSX-Plus detects the ring signal, raises the data terminal ready
line, and starts the OFFTIM and TIMOUT timer

3. When DTR is raised, the modem should answer the phone and establish
a connection with the remote modem, raising the carrier detect
signal when successful

4. When carrier detect is present, TSX-Plus cancels the TIMOUT timer

5. A carriage return is typed at the remote terminal

6. TSX-Plus transmits the greeting message, performs line initiali-
zation, executes the start-up command file(s) (should include
running LOGON), and cancels the OFFTIM timer

7. Normal time-sharing session operations

8. The remote terminal logs off
9. TSX-Plus starts the OFFTIM timer
10. The remote modem hangs up
11. The local modem drops carrier detect
12. TSX-Plus starts the TIMOUT timer
13. When either the OFFTIM or TIMOUT timer elapses, TSX-Plus lowers DTR
14. The local modem hangs up the phone

-66—

e

IT and CL I/0 Processing

In this normal sequence of events, any time the carrier detect signal is lost,
TSX-Plus starts the TIMOUT timer. If the carrier detect signal is re-
established, then TSX-Plus cancels the TIMOUT timer. If the carrier detect
signal remains lost for the period specified by TIMOUT, then TSX-Plus logs off

the line and lowers DTR which should cause the modem to hang up the phone.
This takes care of the case in which the operator of the remote terminal hangs

up the phone without logging off. The converse case, in which the operator of
the remote terminal logs off but does not hang up the phone, is handled by the
OFFTIM timer. If the line remains logged off, but connected (carrier detect
signal present) longer than the period specified by OFFTIM, then the system
lowers DTR and the modem should hang up the phone. The OFFTIM value also deals
with the case in which someone dials in and is unable to successfully log in
within the specified period. Some trial and error adjustment is usually
necessary for the TIMOUT and OFFTIM values to account for the timing varia-
bility of the particular interface card, modem and phone system at each

installation.

Even if a line has been declared to TSX-Plus as a phone line, when it first
logs on (first carriage return received on an inactive line), the system will
treat it as a true phone line only if the carrier detect signal is asserted; if
not, then TSX-Plus treats it as a local line and does not perform any of the
modem control functions described above. This is usually the case for an
"intelligent” modem, which answers the phone for itself without regard to the
DTR signal, and does not assert carrier detect to the system or is connected
through an interface which does not support modem control.

If it is necessary to connect a modem to an interface card which does not
support modem control (e.g. DLV11J), then it is necessary to either manually
establish the connection or use an "intelligent" modem which itself takes care
of monitoring the signal quality (carrier) and answering and hanging up the
phone. Lines connected in this manner may be generated either with or without
the SPHONE flag; TSX-Plus will treat them as local lines in either case and
will not provide any form of modem control, including establishing or monitor-
ing the TIMOUT and OFFTIM telephone security timers.

When using "intelligent” modems, it is important to keep them quiet except for
normal operations. Some modems offer an option of providing information
messages concerning their operation. This can cause futile loops when used
with TSX-Plus. Consider, for example, the following cycle:

1. An incoming call is recognized by the modem which transmits the
message "RING" preceded and followed by carriage return/line feed

combinations.

2. TSX-Plus sees the first carriage return, activates the 1line,
displays the greeting message, sees no carrier (since the connection
has probably not yet been established) and assumes it is a local

line.

-67-

TT and CL I/0 Processing

3. The modem either then attempts to respond to the greeting message as
a command or TSX-Plus attempts to accept "RING" as a command, which
it normally is not, or if LOGON is running, attempts to use "RING"
as a logon user name, followed by whatever comes in next as the
password. This normally does not match the correct password.

4. Synchronization almost always fails between the informative messages
from the modem and the greeting message. This results in the modem
continually sending "ERROR", "RING", "CONNECT" or other messages to
TSX-Plus, and TSX-Plus continually sends the greeting message, fails
to log the line on, and disconnects the line.

The outcome is that the line repeatedly initiates and runs the LOGON program,
but never successfully logs on. This informative message mode is good when the
modem is connected directly to a terminal, but wreaks havoc with normal modem
operations by TSX-Plus. When using a D.C.Hayes Smartmodem (or compatible
modem), it is normal to enable messages when using it as a dial-out device, but
the default switches should be set to disable messages on power—up (on a Hayes
Smartmodem 1200 for example, switch 3 should be UP) and the modem should always
be reset to the quiet mode before returning the line from a CL "dial-out"”
operation to use as a time-sharing 1line. The following example dial-out
session shows how to take over a time-sharing line, connect to it as a virtual
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>